Advanced SearchSearch Tips
A Genome-wide Scan for Selective Sweeps in Racing Horses
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Genome-wide Scan for Selective Sweeps in Racing Horses
Moon, Sunjin; Lee, Jin Woo; Shin, Donghyun; Shin, Kwang-Yun; Kim, Jun; Choi, Ik-Young; Kim, Jaemin; Kim, Heebal;
  PDF(new window)
Using next-generation sequencing, we conducted a genome-wide scan of selective sweeps associated with selection toward genetic improvement in Thoroughbreds. We investigated potential phenotypic consequence of putative candidate loci by candidate gene association mapping for the finishing time in 240 Thoroughbred horses. We found a significant association with the trait for Ral GApase alpha 2 (RALGAP2) that regulates a variety of cellular processes of signal trafficking. Neighboring genes around RALGAP2 included insulinoma-associated 1 (INSM1), pallid (PLDN), and Ras and Rab interactor 2 (RIN2) genes have similar roles in signal trafficking, suggesting that a co-evolving gene cluster located on the chromosome 22 is under strong artificial selection in racehorses.
Single Nucleotide Polymorphism;Racehorse;Selective Sweep;Quantitative Trait Loci;
 Cited by
Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep, Animal Genetics, 2016, 48, 1, 55  crossref(new windwow)
Anisimova, M. and C. Kosiol. 2009. Investigating protein-coding sequence evolution with probabilistic codon substitution models. Mol. Biol. Evol. 26:255-271. crossref(new window)

Binns, M., D. A. Boehler, and D. H. Lambert. 2010. Identification of the myostatin locus (MSTN) as having a major effect on optimum racing distance in the Thoroughbred horse in the USA. Anim. Genet. 41:154-158. crossref(new window)

Browning, S. R. and B. L. Browning. 2007. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81:1084-1097. crossref(new window)

Cunningham, E. P., J. J. Dooley, R. K. Splan, and D. G. Bradley. 2001. Microsatellite diversity, pedigree relatedness and the contributions of founder lineages to thoroughbred horses. Anim. Genet. 32:360-364. crossref(new window)

Duggal, P., E. M. Gillanders, T. N. Holmes, and J. E. Bailey-Wilson. 2008. Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies. BMC Genomics 9:516. crossref(new window)

Excoffier, L., T. Hofer, and M. Foll. 2009. Detecting loci under selection in a hierarchically structured population. Heredity 103:285-298. crossref(new window)

Excoffier, L. and H. E. L. Lischer. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10:564-567. crossref(new window)

Gilmour, A. R., B. J. Gogel, B. R. Cullis, R. Thompson, D. Butler, M. Cherry, D. Collins, G. Dutkowski, S. A. Harding, and K. Haskard. 2009. ASReml User Guide Release 3.0. VSN International Ltd., UK.

Grobet, L., D. Pirottin, F. Farnir, D. Poncelet, L. J. Royo, B. Brouwers, E. Christians, D. Desmecht, F. Coignoul, R. Kahn, and M. Georges. 2003. Modulating skeletal muscle mass by postnatal, muscle-specific inactivation of the myostatin gene. Genesis 35:227-238. crossref(new window)

Gu, J., N. Orr, S. D. Park, L. M. Katz, G. Sulimova, D. E. MacHugh, and E. W. Hill. 2009. A genome scan for positive selection in thoroughbred horses. PLoS One 4(6):e5767-e5767. crossref(new window)

Hill, E. W., D. G. Bradley, M. Al Barody, O. Ertugrul, R. Splan, I. Zakharov, and E. P. Cunningham. 2002. History and integrity of thoroughbred dam lines revealed in equine mtDNA variation. Anim. Genet. 33:287-294. crossref(new window)

Hill, E. W., J. Gu, S. S. Eivers, R. G. Fonseca, B. A. McGivney, P. Govindarajan, N. Orr, L. M. Katz, and D. MacHugh. 2010. A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in Thoroughbred horses. PLoS One 5(1):e8645. crossref(new window)

Innan, H. and Y. Kim. 2008. Detecting local adaptation using the joint sampling of polymorphism data in the parental and derived populations. Genetics 179:1713-1720. crossref(new window)

Jacob, J., R. Storm, D. S. Castro, C. Milton, P. Pla, F. Guillemot, C. Birchmeier, and J. Briscoe. 2009. Insm1 (IA-1) is an essential component of the regulatory network that specifies monoaminergic neuronal phenotypes in the vertebrate hindbrain. Development 136:2477-2485. crossref(new window)

Jansen, T., P. Forster, M. A. Levine, H. Oelke, M. Hurles, C. Renfrew, J. Weber, and K. Olek. 2002. Mitochondrial DNA and the origins of the domestic horse. Proc. Natl. Acad. Sci. USA 99:10905-10910. crossref(new window)

Kalashnikova, E., R. A. Lorca, I. Kaur, G. A. Barisone, B. Li, T. Ishimaru, J. S. Trimmer, D. P. Mohapatra, and E. Diaz. 2010. SynDIG1: An activity-regulated, AMPA-receptor-interacting transmembrane protein that regulates excitatory synapse development. Neuron 65:80-93. crossref(new window)

Kambadur, R., M. Sharma, T. P. L. Smith, and J. J. Bass. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 7:910-915. crossref(new window)

Kim, K. I., Y. H. Yang, S. S. Lee, C. Park, R. Ma, J. L. Bouzat, and H. A. Lewin. 1999. Phylogenetic relationships of Cheju horses to other horse breeds as determined by mtDNA D-loop sequence polymorphism. Anim. Genet. 30:102-108. crossref(new window)

Lee, S. J. 2007. Sprinting without myostatin: A genetic determinant of athletic prowess. Trends Genet. 23:475-477. crossref(new window)

Li, H. and R. Durbin. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754-1760. crossref(new window)

Lindgren, G., N. Backstrom, J. Swinburne, L. Hellborg, A. Einarsson, K. Sandberg, G. Cothran, C. Vila, M. Binns, and H. Ellegren. 2004 Limited number of patrilines in horse domestication. Nat. Genet. 36:335-336. crossref(new window)

McGivney, B. A., J. A. Browne, R. G. Fonseca, L. M. Katz, D. E. MacHugh, R. Whiston, and E. W. Hill. 2012. MSTN genotypes in Thoroughbred horses influence skeletal muscle gene expression and racetrack performance. Anim. Genet. 43:810-812. crossref(new window)

McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, and M. A. DePristo. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20:1297-1303. crossref(new window)

McPherron, A. C. and S. J. Lee. 1997. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA 94:12457-12461. crossref(new window)

Nam, D. Y. 1969. Horse production in Cheju during Lee dynasty. Studies on Korean History 4:131-131.

Nei, M. 1987. Molecular evolutionary genetics. Columbia Univ. Press, New York, NY, USA.

Nei, M. and W. H. Li. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. 76:5269-5273. crossref(new window)

Orlando, L., A. Ginolhac, G. Zhang, D. Froese, A. Albrechtsen, M. Stiller, M. Schubert, E. Cappellini, B. Petersen, and I. Moltke et al. 2013. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499:74-78. crossref(new window)

Park, K. D., H. Kim, J. Y. Hwang, C. K. Lee, K. T. Do, H. S. Kim, Y. M. Yang, Y. J. Kwon, J. Kim, H. J. Kim, K. D. Song, J. D. Oh, H. Kim, B. W. Cho, S. Cho, and H. K. Lee. 2014. Copy number deletion has little impact on gene expression levels in racehorses. Asian Australas. J. Anim. Sci. 27:1345-1354. crossref(new window)

Petersen, J. L., J. R. Mickelson, E. G. Cothran, L. S. Andersson, J. Axelsson, E. Bailey, D. Bannasch, M. M. Binns, A. S. Borges, and P. Brama et al. 2013. Genetic diversity in the modern horse illustrated from genome-wide SNP data. PLoS One 8(1):e54997. crossref(new window)

Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. R. Ferreira, D. Bender, J. Maller, P. Sklar, P. I. W. de Bakker, M. J. Daly, and P. C. Sham. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81:559-575. crossref(new window)

Qanbari, S., H. Pausch, S. Jansen, M. Somel, T. M. Strom, R. Fries, R. Nielsen, and H. Simianer. 2014. Classic selective sweeps revealed by massive sequencing in cattle. PLoS Genet. 10(2):e1004148. crossref(new window)

Riquetl, I., A. Schoeberleinl, S. Dunnerz, F. Menissier, and I. Massabanda. 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 17:71-71. crossref(new window)

Suzuki, J., Y. Yamazaki, L. Guang, Y. Kaziro, and H. Koide. 2000. Involvement of Ras and Ral in chemotactic migration of skeletal myoblasts. Mol. Cell. Biol. 20:4658-4665. crossref(new window)

Thomas, P. D., M. J. Campbell, A. Kejariwal, H. Mi, B. Karlak, R. Daverman, K. Diemer, A. Muruganujan, and A. Narechania. 2003. PANTHER: A library of protein families and subfamilies indexed by function. Genome Res. 13:2129-2141. crossref(new window)

Tozaki, T., T. Miyake, H. Kakoi, H. Gawahara, S. Sugita, T. Hasegawa, N. Ishida, K. Hirota, and Y. Nakano. 2010. A genome.wide association study for racing performances in Thoroughbreds clarifies a candidate region near the MSTN gene. Anim. Genet. 41:28-35. crossref(new window)

Vaysse, A., A. Ratnakumar, T. Derrien, E. Axelsson, G. Rosengren Pielberg, S. Sigurdsson, T. Fall, E. H. Seppala, M. S. Hansen, and C. T. Lawley et al. 2011. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLoS Genet. 7(10):e1002316. crossref(new window)

Williamson, S. A. and R. G. Beilharz. 1998. The inheritance of speed, stamina and other racing performance characters in the Australian Thoroughbred. J. Anim. Breed. Genet. 115:1-16. crossref(new window)

Willing, E. M., C. Dreyer, and C. van Oosterhout. 2012. Estimates of genetic differentiation measured by $F_ST$ do not necessarily require large sample sizes when using many SNP markers. PLoS One 7(8):e42649. crossref(new window)