Advanced SearchSearch Tips
Effect of Soyabean Isoflavones Exposure on Onset of Puberty, Serum Hormone Concentration and Gene Expression in Hypothalamus, Pituitary Gland and Ovary of Female Bama Miniature Pigs
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Soyabean Isoflavones Exposure on Onset of Puberty, Serum Hormone Concentration and Gene Expression in Hypothalamus, Pituitary Gland and Ovary of Female Bama Miniature Pigs
Fan, Juexin; Zhang, Bin; Li, Lili; Xiao, Chaowu; Oladele, Oso Abimbola; Jiang, Guoli; Ding, Hao; Wang, Shengping; Xing, Yueteng; Xiao, Dingfu; Yin, Yulong;
  PDF(new window)
This study was to investigate the effect of soyabean isoflavones (SIF) on onset of puberty, serum hormone concentration, and gene expression in hypothalamus, pituitary and ovary of female Bama miniature pigs. Fifty five, 35-days old pigs were randomly assigned into 5 treatment groups consisting of 11 pigs per treatment. Results showed that dietary supplementation of varying dosage (0, 250, 500, and 1,250 mg/kg) of SIF induced puberty delay of the pigs with the age of puberty of pigs fed basal diet supplemented with 1,250 mg/kg SIF was significantly higher (p<0.05) compared to control. Supplementation of SIF or estradiol valerate (EV) reduced (p<0.05) serum gonadotrophin releasing hormone and luteinizing hormone concentration, but increased follicle-stimulating hormone concentration in pigs at 4 months of age. The expression of KiSS-1 metastasis-suppressor (KISS1), steroidogenic acute regulatory protein (StAR) and 3-beta-hydroxysteroid dehydrogenase/delta-5-delta-4 isomerase () was reduced (p<0.01) in SIF-supplemented groups. Expression of gonadotropin-releasing hormone receptor in the pituitary of miniature pigs was reduced (p<0.05) compared to the control when exposed to 250, 1,250 mg/kg SIF and EV. Pigs on 250 mg/kg SIF and EV also showed reduced (p<0.05) expression of cytochrome P450 19A1 compared to the control. Our results indicated that dietary supplementation of SIF induced puberty delay, which may be due to down-regulation of key genes that play vital roles in the synthesis of steroid hormones.
Soybean Isoflavones;Puberty;Puberty Delay;Bama Miniature Pigs;
 Cited by
Bateman, H. L. and H. B. Patisaul. 2008. Disrupted female reproductive physiology following neonatal exposure to phytoestrogens or estrogen specific ligands is associated with decreased gnrh activation and kisspeptin fiber density in the hypothalamus. Neurotoxicology 29:988-997. crossref(new window)

Cassidy, A., S. Bingham, and K. Setchell. 1995. Biological effects of isoflavones in young women: Importance of the chemical composition of soyabean products. Br. J. Nutr. 74:587-601. crossref(new window)

Ciechanowska, M., M. Lapot, K. Mateusiak, and F. Przekop. 2010. Neuroendocrine regulation of gnrh release and expression of gnrh and gnrh receptor genes in the hypothalamus-pituitary unit in different physiological states. Reprod. Biol. 10:85-124. crossref(new window)

Clapper, J. and A. Tomlin. 2012. Effects of the phytoestrogen genistein on the porcine anterior pituitary insulin-like growth factor system. Domest. Anim. Endocrinol. 42:173-182. crossref(new window)

Dickerson, S. M. and A. C. Gore. 2007. Estrogenic environmental endocrine-disrupting chemical effects on reproductive neuroendocrine function and dysfunction across the life cycle. Rev. Endocr. Metab. Disord. 8:143-159. crossref(new window)

Doerge, D. R. and D. M. Sheehan. 2002. Goitrogenic and estrogenic activity of soy isoflavones. Environ. Health Perspect. 110(Suppl. 3):349-353.

Edson, M. A., A. K. Nagaraja, and M. M. Matzuk. 2009. The mammalian ovary from genesis to revelation. Endocr. Rev. 30:624-712. crossref(new window)

Fu, W. J., J. Hu, T. Spencer, R. Carroll, and G. Wu. 2006. Statistical models in assessing fold change of gene expression in real-time RT-PCR experiments. Comput. Biol. Chem. 30:21-26. crossref(new window)

Hwang, C. S., H. S. Kwak, H. J. Lim, S. H. Lee, Y. S. Kang, T. B. Choe, H. G. Hur, and K. O. Han. 2006. Isoflavone metabolites and their in vitro dual functions: They can act as an estrogenic agonist or antagonist depending on the estrogen concentration. J. Steroid Biochem. Mol. Biol. 101:246-253. crossref(new window)

Jefferson, W. N., E. Padilla-Banks, and R. R. Newbold. 2005. Adverse effects on female development and reproduction in cd-1 mice following neonatal exposure to the phytoestrogen genistein at environmentally relevant doses. Biol. Reprod. 73:798-806. crossref(new window)

Jefferson, W. N. and C. J. Williams. 2011. Circulating levels of genistein in the neonate, apart from dose and route, predict future adverse female reproductive outcomes. Reprod. Toxicol. 31:272-279. crossref(new window)

Ju, X. H., H. J. Xu, Y. H. Yong, L. L. An, Y. M. Xu, P. R. Jiao, and M. Liao. 2014. Heat stress upregulates the expression of TLR4 and its alternative splicing variant in bama miniature pigs. J. Integr. Agric. 13:2479-2487. crossref(new window)

Lehman, M. N., C. M. Merkley, L. M. Coolen, and R. L. Goodman. 2010. Anatomy of the kisspeptin neural network in mammals. Brain Res. 1364:90-102. crossref(new window)

Li, D. F., J. L. Nelssen, P. G. Reddy, F. Blecha, R. Klemm, and R. D. Goodband. 1991. Interrelationship between hypersensitivity to soybean proteins and growth performance in early-weaned pigs. J. Anim. Sci. 69:4062-4069.

Losa, S. M., K. L. Todd, A. W. Sullivan, J. Cao, J. A. Mickens, and H. B. Patisaul. 2011. Neonatal exposure to genistein adversely impacts the ontogeny of hypothalamic kisspeptin signaling pathways and ovarian development in the peripubertal female rat. Reprod. Toxicol. 31:280-289. crossref(new window)

Lu, S. S., C. P. Lau, Y. F. Tung, S. W. Huang, Y. H. Chen, H. C. Shih, S. C. Tsai, C. C. Lu, S. W. Wang, J. J. Chen, E. J. Chien, C. H. Chien, and P. S. Wang. 1996. Lactate stimulates progesterone secretion via an increase in cAMP production in exercised female rats. Am. J. Physiol. 271:E910-915.

Nahoko I., U. Yoshihisa, T. Yoko, N. Tomoko, K. Masatoshi, N. Yousuke, W. Youki, M. Shiori, T. Junko, I. Naoko, M. Fuko, O. Satoshi, M. Kei-ichiro, T. Hiroko. 2014. KISS1 gene expression in the developing brain of female pigs in pre- and peripubertal periods. J. Reprod. Dev. 60:312-316. crossref(new window)

Oakley, A. E., D. K. Clifton, and R. A. Steiner. 2009. Kisspeptin signaling in the brain. Endocr. Rev. 30:713-743. crossref(new window)

Ohno, S., Y. Nakajima, K. Inoue, H. Nakazawa, and S. Nakajin. 2003. Genistein administration decreases serum corticosterone and testosterone levels in rats. Life Sci. 74:733-742. crossref(new window)

Persky, V. W., R. T. Chatterton, L. V. Van Horn, M. D. Grant, P. Langenberg, and J. Marvin. 1992. Hormone levels in vegetarian and nonvegetarian teenage girls: Potential implications for breast cancer risk. Cancer Res. 52:578-583.

Setchell, K. D., L. Zimmer-Nechemias, J. Cai, and J. E. Heubi. 1998. Isoflavone content of infant formulas and the metabolic fate of these phytoestrogens in early life. Am. J. Clin. Nutr. 68:1453s-1461s.

Soede, N. M., P. Langendijk, and B. Kemp. 2011. Reproductive cycles in pigs. Anim. Reprod. Sci. 124:251-258. crossref(new window)

Sterle, J. A. and W. R. Lamberson. 1996. Effects of exposure to an estrual female on attainment of puberty in gilts. Theriogenology 45:733-744. crossref(new window)

Stocco, D. M. 2001. StAR protein and the regulation of steroid hormone biosynthesis. Annu. Rev. Physiol. 63:193-213. crossref(new window)

Strom, B. L., R. Schinnar, E. E. Ziegler, K. T. Barnhart, M. D. Sammel, G. A. Macones, V. A. Stallings, J. M. Drulis, S. E. Nelson, and S. A. Hanson. 2001. Exposure to soy-based formula in infancy and endocrinological and reproductive outcomes in young adulthood. Jama 286:807-814. crossref(new window)

Takeyoshi, M., M. Sawaki, S. Noda, T. Muroi, and K. Yamasaki. 2002. Effect of gonadotropin-releasing hormone antagonist on ovarian and uterine weights in immature female rats. Reprod. Toxicol. 16:367-369. crossref(new window)

Thackray, V. G., P. L. Mellon, and D. Coss. 2010. Hormones in synergy: Regulation of the pituitary gonadotropin genes. Mol. Cell. Endocrinol. 314:192-203. crossref(new window)

Tiemann, U., F. Schneider, J. Vanselow, and W. Tomek. 2007. In vitro exposure of porcine granulosa cells to the phytoestrogens genistein and daidzein: Effects on the biosynthesis of reproductive steroid hormones. Reprod. Toxicol. 24:317-325. crossref(new window)

Tomikawa, J., T. Homma, S. Tajima, T. Shibata, Y. Inamoto, K. Takase, N. Inoue, S. Ohkura, Y. Uenoyama, K. Maeda, and H. Tsukamura. 2010. Molecular characterization and estrogen regulation of hypothalamic KISS1 gene in the pig. Biol. Reprod. 82:313-319. crossref(new window)

Wang, D. F., N. Y. Zhang, Y. Z. Peng, and D. S. Qi. 2010. Interaction of zearalenone and soybean isoflavone on the development of reproductive organs, reproductive hormones and estrogen receptor expression in prepubertal gilts. Anim. Reprod. Sci. 122:317-323. crossref(new window)

Wang, Y., W. Man Gho, F. L. Chan, S. Chen, and L. K. Leung. 2008. The red clover (Trifolium pratense) isoflavone biochanin A inhibits aromatase activity and expression. Br. J. Nutr. 99:303-310.

Yan, G. R., C. L. Xiao, G. W. He, X. F. Yin, N. P. Chen, Y. Cao, and Q. Y. He. 2010. Global phosphoproteomic effects of natural tyrosine kinase inhibitor, genistein, on signaling pathways. Proteomics 10:976-986.

Yin, Y. L., Z. Y. Deng, H. L. Huang, T. J. Li, and H. Y. Zhong. 2004. The effect of arabinoxylanase and protease supplementation on nutritional value of diets containing wheat bran or rice bran in growing pig. J. Anim. Feed Sci. 13:445-461.

Yuan, X. X., B. Zhang, L. L. Li, C. W. Xiao, J. X. Fan, M. M. Geng, and Y. L. Yin. 2012. Effects of soybean isoflavones on reproductive parameters in Chinese mini-pig boars. J. Anim. Sci. Biotechnol. 3:31. crossref(new window)