Advanced SearchSearch Tips
Effect of Lipid Sources with Different Fatty Acid Profiles on Intake, Nutrient Digestion and Ruminal Fermentation of Feedlot Nellore Steers
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Lipid Sources with Different Fatty Acid Profiles on Intake, Nutrient Digestion and Ruminal Fermentation of Feedlot Nellore Steers
Fiorentini, Giovani; Carvalho, Isabela P.C.; Messana, Juliana D.; Canesin, Roberta C.; Castagnino, Pablo S.; Lage, Josiane F.; Arcuri, Pedro B.; Berchielli, Telma T.;
  PDF(new window)
The present study was conducted to determine the effect of lipid sources with different fatty acid profiles on nutrient digestion and ruminal fermentation. Ten rumen and duodenal fistulated Nellore steers (268 body weight) were distributed in a duplicated Latin square. Dietary treatments were as follows: without fat (WF), palm oil (PO), linseed oil (LO), protected fat (PF; Lactoplus), and whole soybeans (WS). The roughage feed was corn silage (600 g/kg on a dry matter [DM] basis) plus concentrate (400 g/kg on a DM basis). The higher intake of DM and organic matter (OM) (p<0.001) was found in animals on the diet with PF and WF (around 4.38 and 4.20 kg/d, respectively). Treatments with PO and LO decreased by around 10% the total digestibility of DM and OM (p<0.05). The addition of LO decreased by around 22.3% the neutral detergent fiber digestibility (p = 0.047) compared with other diets. The higher microbial protein synthesis was found in animals on the diet with LO and WS (33 g N/kg OM apparently digested in the rumen; p = 0.040). The highest C18:0 and linolenic acid intakes occurred in animals fed LO (p<0.001), and the highest intake of oleic (p = 0.002) and C16 acids (p = 0.022) occurred with the diets with LO and PF. Diet with PF decreased biohydrogenation extent (p = 0.05) of C18:1 n9,c, C18:2 n6,c, and total unsaturated fatty acids (UFA; around 20%, 7%, and 13%, respectively). The diet with PF and WF increased the concentration of (p<0.001); however, the diet did not change volatile fatty acids (p>0.05), such as the molar percentage of acetate, propionate, butyrate and the acetate:propionate ratio. Treatments PO, LO and with WS decreased by around 50% the concentration of protozoa (p<0.001). Diets with some type of protection (PF and WS) decreased the effects of lipid on ruminal fermentation and presented similar outflow of benefit UFA as LO.
Beef Cattle;Biohydrogenation;Microbial Protein Synthesis;Lipids;Protozoa;
 Cited by
State of the art in rumen lipid protection technologies and emerging interfacial protein cross-linking methods, European Journal of Lipid Science and Technology, 2016, 119, 5, 1600345  crossref(new windwow)
Use of black soldier fly larvae (Hermetia illucens) to substitute soybean meal in ruminant diet: An in vitro rumen fermentation study, Veterinary World, 2017, 10, 12, 1436  crossref(new windwow)
Effects of partial replacement of maize in the diet with crude glycerin and/or soyabean oil on ruminal fermentation and microbial population in Nellore steers, British Journal of Nutrition, 2017, 118, 09, 651  crossref(new windwow)
AOAC. 1990. Official Methods of Analysis. 15th. ed. Association of Official Analytical Chemists, Arlington, VA, USA.

Casali, A. O., E. Detmann, S. C. Valadares Filho, J. C. Pereira, L. T. Henriques, S. G. Freitas, and M. F. Paulino. 2008. Influence of incubation time and particles size on indigestible compounds contents in cattle feeds and feces obtained by in situ procedures. R. Bras. Zoot. 37:335-342. crossref(new window)

Doreau, M. and A. Ferlay. 1994. Digestion and utilization of fatty acids by ruminants. Anim. Feed Sci. Technol. 45:379-396. crossref(new window)

Doreau, M. and A. Ferlay. 1995. Effect of dietary lipids on nitrogen metabolism in the rumen: a review. Livest. Product. Sci. 43:97-110. crossref(new window)

Duckett, S. K. and M. H. Gillis. 2010. Effects of oil source and fish oil addition on ruminal biohydrogenation of fatty acids and conjugated linoleic acid formation in beef steers fed finishing diets. J. Anim. Sci. 88:2684-2691. crossref(new window)

Eugene, M., H. Archimede, and D. Sauvant. 2004. Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants. Livest. Prod. Sci. 85:81-97. crossref(new window)

Fenner, H. 1965. Method for determining total volatile bases in rumen fluid by steam distillation. J. Dairy Sci. 48:249-251. crossref(new window)

Fiorentini, G., J. D. Messana, P. H. Dian, R. A. Reis, R. C. Canesin, A. V. Pires, and T. T. Berchielli. 2013. Digestibility, fermentation and rumen microbiota of crossbred heifers fed diets with different soybean oil availabilities in the rumen. Anim. Feed Sci. Technol. 181:26-34. crossref(new window)

Fiorentini, G., I. P. Carvalho, J. D. Messana, P. S. Castagnino, A. Berndt, R. C. Canesin, R. T. Frighetto, and T. T. Berchielli. 2014. Effect of lipid sources with different fatty acid profiles on the intake, performance, and methane emissions of feedlot Nellore steers. J. Anim. Sci. 92:1613-1620. crossref(new window)

Harvatine, K. J. and M. S. Allen. 2006. Effects of fatty acid supplements on ruminal and total tract nutrient digestion in lactating dairy cows. J. Dairy Sci. 89:1092-1103. crossref(new window)

Ivan, M., P. S. Mir, K. M. Koenig, L. M. Rode, L. Neill, T. Entz, and Z. Mir. 2001. Effects of dietary sunflower seed oil on rumen protozoa population and tissue concentration of conjugated linoleic acid in sheep. Small Rumin. Res. 41:215-227. crossref(new window)

Jenkins, T. C. 1994. Regulation of lipid metabolism in the rumen. J. Nutr. 124(8 Suppl):1372S-1376G. crossref(new window)

Jenkins, T. C. and W. C. Bridges Jr. 2007. Protection of fatty acids against ruminal biohydrogenation in cattle. Eur. J. Lipid Sci. Technol. 109:778-789. crossref(new window)

Klusmeyer, T. H. and J. K. Clark. 1991. Effects of dietary fat and protein on fatty acid flow to the duodenum and in milk produced by dairy cows. J. Dairy Sci. 74:3055-3067. crossref(new window)

Lundy, F. P., E. Block, W. C. Bridges Jr., J. A. Bertrand, and T. C. Jenkins. 2004. Ruminal biohydrogenation in Holstein cows fed soybean fatty acids as amides or calcium salts. J. Dairy Sci. 87:1038-1046. crossref(new window)

Maia, M. R., L. C. Chaudhary, L. Figueres, and R. J. Wallace. 2007. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek 91:303-314. crossref(new window)

Manso, T., T. Castro, A. R. Mantecon, and V. Jimeno. 2006. Effects of palm oil and calcium soaps of palm oil fatty acids in fattening diets on digestibility, performance and chemical body composition of lambs. Anim. Feed Sci. Technol. 127:175-186. crossref(new window)

Menezes, L. F., G. V. Kozloski, J. Restle, I. L. Brondani, R. D. Pazdiora, and J. Cattelam. 2010. Profile of ingested fatty acids and in the duodenal digest of steers fed different diets. R. Bras. Zootec. 39:2502-2511. crossref(new window)

Messana, J. D., T. T. Berchielli, P. B. Arcuri, R. A. Reis, R. C. Canesin, A. F. Ribeiro, G. Fiorentini, and J. J. Fernandes. 2013. Rumen fermentation and rumen microbes in Nellore steers receiving diets with different lipid contents. R. Bras. Zoot. 42:204-212. crossref(new window)

Otaru, S. M., A. M. Adamu, O. W. Ehoche, and H. J. Makun. 2011. Effects of varying the level of palm oil on feed intake, milk yield and composition and postpartum weight changes of Red Sokoto goats. Small Rumin. Res. 96:25-35. crossref(new window)

Pina, D. S., S. C. Valadares Filho, L. O. Tedeschi, A. M. Barbosa, and R. F. Valadares. 2009. Influence of different levels of concentrate and ruminally undegraded protein on digestive variables in beef heifers. J. Anim. Sci. 87:1058-1067. crossref(new window)

Russell, J. B., J. D. O'Connor, D. G. Fox, P. J. van Soest, and C. J. Sniffen. 1992. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. J. Anim. Sci. 70:3551-3561. crossref(new window)

Schmidely, P., F. Glasser, M. Doreau, and D. Sauvant. 2008. Digestion of fatty acids in ruminants: a meta-analysis of flows and variation factors. 1. Total fatty acids. Animal 2:677-690.

Soliva, C. R., L. Meile, A. Cie.lak, M. Kreuzer, and A. Machmuller. 2004. Rumen simulation technique study on the interactions of dietary lauric and myristic acid supplementation in suppressing ruminal methanogenesis. Br. J. Nutr. 92:689-700. crossref(new window)

Sterk, A., B. Vlaeminck, A. M. van Vuuren, W. H. Hendriks, and J. Dijkstra. 2012. Effects of feeding different linseed sources on omasal fatty acid flows and fatty acid profiles of plasma and milk fat in lactating dairy cows. J. Dairy Sci. 95:3149-3165. crossref(new window)

Sullivan, H. M., J. K. Bernard, H. E. Amos, and T. C. Jenkins. 2004. Performance of lactating dairy cows fed whole cottonseed with elevated concentrations of free fatty acids in the oil. J. Dairy Sci. 87:665-671. crossref(new window)

Ueda, K., A. Ferlay, J. Chabrot, J. J. Loor, Y. Chilliard, and M. Doreau. 2003. Effect of linseed oil supplementation on ruminal digestion in dairy cows fed diets with different forage:concentrate ratios. J. Dairy Sci. 86:3999-4007. crossref(new window)

Wanapat, M., C. Mapato, R. Pilajun, and W. Toburan. 2011. Effects of vegetable oil supplementation on feed intake, rumen fermentation, growth performance, and carcass characteristic of growing swamp buffaloes. Livest. Prod. Sci. 135:32-37. crossref(new window)

Wu, Z., O. A. Ohajuruka, and D. L. Palmquist. 1991. Ruminal synthesis, biohydrogenation, and digestibility of fatty acids by dairy cows. J. Dairy Sci. 74:3025-3034. crossref(new window)

Yang, S. L., D. P. Bu, J. Q. Wang, Z. Y. Hu, D. Li, H. Y. Wei, L. Y. Zhou, and J. J. Loor. 2009. Soybean oil and linseed oil supplementation affect profiles of ruminal microorganisms in dairy cows. Animal 3:1562-1569. crossref(new window)