Advanced SearchSearch Tips
Effect of Suckling Systems on Serum Oxytocin and Cortisol Concentrations and Behavior to a Novel Object in Beef Calves
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Suckling Systems on Serum Oxytocin and Cortisol Concentrations and Behavior to a Novel Object in Beef Calves
Chen, Siyu; Tanaka, Shigefumi; Ogura, Shin-ichiro; Roh, Sanggun; Sato, Shusuke;
  PDF(new window)
We investigated differences between effects of natural- and bucket-suckling methods on basal serum oxytocin (OT) and cortisol concentrations, and the effect of OT concentration on affiliative and investigative behavior of calves to a novel object. Ten Japanese Black calves, balanced with birth order, were allocated evenly to natural-suckling (NS) and bucket suckling (BS) groups. Blood samples were collected at the ages of 1 and 2 months (1 week after weaning) calves, and serum OT and cortisol concentrations were measured using enzyme-linked immunosorbent assay and enzymeimmunoassay tests, respectively. Each calf at the age of 2 months (2 weeks after weaning) was released into an open-field with a calf decoy, and its investigative and affiliative behaviors were recorded for 20 minutes. In 1-month-old calves, the basal serum OT concentration ( [meanstandard deviation, pg/mL]) of NS was significantly higher than that of BS () (p<0.05), whereas the basal cortisol concentration ( [meanstandard deviation, ng/mL]) of NS was significantly lower than that in BS () (p<0.05). Additionally, a negative correlation was noted between serum OT and cortisol concentrations in 1-month-old calves (p = 0.06). Further, the higher serum OT concentration the calves had at 1 month old, the more investigative the calves were at 2 months old but not affiliative in the open-field with a calf decoy. Thus, we concluded that the natural suckling method from a dam elevates the basal serum OT concentration in calves, and high serum OT concentrations induce investigative behavior and attenuate cortisol concentrations.
Oxytocin;Cortisol;Natural Suckling;Investigative Behavior;Calf;Stress;
 Cited by
Social Support Modulates Stress-Related Gene Expression in Various Brain Regions of Piglets, Frontiers in Behavioral Neuroscience, 2016, 10, 1662-5153  crossref(new windwow)
Role of oxytocin in improving the welfare of farm animals — A review, Asian-Australasian Journal of Animal Sciences, 2016, 30, 4, 449  crossref(new windwow)
Arthington, J. D., J. W. Spears, and D. C. Miller. 2005. The effect of early weaning on feedlot performance and measures of stress in beef calves. J. Anim. Sci. 83:933-939. crossref(new window)

Babu, L. K., H. N. Pandey, and A. Sahoo. 2004. Effect of individual versus group rearing on ethological and physiological responses of crossbred calves. Appl. Anim. Behav. Sci. 87:177-191. crossref(new window)

Babygirija, R., D. Cerjak, S. Yoshimoto, I. Gribovskaja-Rupp, M. Bulbul, K. Ludwig, and T. Takahashi. 2012. Affiliative behavior attenuates stress responses of GI tract via up-regulating hypothalamic oxytocin expression. Auton. Neurosci. 169:28-33. crossref(new window)

Bredewold, R., C. J. W. Smith, K. M. Dumais, and A. H. Veenema. 2014. Sex-specific modulation of juvenile social play behavior by vasopressin and oxytocin depends on social context. Front. Behav. Neurosci. 8:216.

Broom, D. M. and A. F. Fraser. 2007. Domestic Animal Behaviour and Welfare. 4th edn. Cambridge University Press, London, UK.

Chen, S., S. Tanak, S. Roh, and S. Sato. 2014. Factors affecting oxytocin concentration and relationship between oxytocin concentration and affiliative behavior. In: Proceedings of the 48th International Congress of the International Society for Applied Ethology. Vitoria-Gasteiz, Spain. p.137.

Das, S. M., I. Redbo, and H. Wiktorsson. 2000. Effect of age of calf on suckling behaviour and other behavioural activities of Zebu and crossbred calves during restricted suckling periods. Appl. Anim. Behav. Sci. 67:47-57. crossref(new window)

Edwards, S. A. and D. M. Broom. 1982. Behavioural interactions of dairy cows with their newborn calves and the effects of parity. Anim. Behav. 30:525-535. crossref(new window)

Grondahl, A. M., E. M. Skancke, C. M. Mejdell, and J. H. Jansen. 2007. Growth rate, health and welfare in a dairy herd with natural suckling until 6.8 weeks of age: a case report. Acta Vet. Scand. 49:16. crossref(new window)

Ising, H. and M. Ising. 2002. Chronic cortisol increases in the first half of the night caused by road traffic noise. Noise Health 4:13-21.

Hernandez, C., A. Orihuela, S. Froberg, and L. M. Lidfors. 2006. Effect of restricted suckling on physiological and behavioural stress parameters in dual-purpose cattle in the tropics. Livest. Sci. 99:21-27. crossref(new window)

Jensen, M. B., K. S. Vestergaard, C. C. Krohn, and L. Munksgaard. 1997. Effect of single versus group housing and space allowance on responses of calves during open-field tests. Appl. Anim. Behav. Sci. 54:109-121.

Krohn, C. C., J. Foldager, and L. Mogensen. 1999. Long-term effect of colostrum feeding methods on behaviour in female dairy calves. Acta Agric. Scand. Anim. Sci. 49:57-64.

Krohn, C. C. 2001. Effects of different suckling systems on milk production, udder health, reproduction, calf growth and some behavioural aspects in high producing dairy cows: A review. Appl. Anim. Behav. Sci. 72:271-280. crossref(new window)

Kirsch, P., C. Esslinger., Q. Chen, D. Mier, S. Lis, S. Siddhanti, H. Gruppe, V. S. Mattay, B. Gallhofer, and A. Meyer-Lindenberg. 2005. Oxytocin modulates neural circuitry for social cognition and fear in humans. J. Neurosci. 25:11489-11493. crossref(new window)

Kohari, D., S. Sato, and Y. Nakai. 2009. Does the maternal grooming of cattle clean bacteria from the coat of calves? Behav. Processes 80:202-204. crossref(new window)

Lupoli, B., B. Johansson, K. Uvnas-Moberg, and K. Svennersten-Sjaunja. 2001. Effect of suckling on the release of oxytocin, prolactin, cortisol, gastrin, cholecystokinin, somatostatin and insulin in dairy cows and their calves. J. Dairy Res. 68:175-187. crossref(new window)

Metz, J. and J. H. M. Metz. 1986. Maternal influence on defecation and urination in the newborn calf. Appl. Anim. Behav. Sci. 16:325-333. crossref(new window)

Mills, D. S. 2010. The Encyclopedia of Applied Animal Behaviour and Welfare. CABI, Wallingford, UK.

National Agriculture and Food Research Organization. 2008. Japanese Feeding Standard for Beef Cattle. Japan Livestock Industry Association, Tokyo, Japan.

Neumann, I., E. Koehler, R. Landgraf, and J. Summy-Long. 1994. An oxytocin receptor antagonist infused into the supraoptic nucleus attenuates intranuclear and peripheral release of oxytocin during suckling in conscious rats. Endocrinology 134:141-148. crossref(new window)

Nowak, R., T. M. Murphy, D. R. Lindsay, P. Alster, R. Andersson, and K. Uvnas-Moberg. 1997. Development of a preferential relationship with the mother by the newborn lamb: importance of the sucking activity. Physiol. Behav. 62:681-688. crossref(new window)

Odendaal, J. S. J. and R. A. Meintjes. 2003. Neurophysiological correlates of affiliative behaviour between humans and dogs. Vet. J. 165:296-301. crossref(new window)

Petersson, M., P. Alster, T. Lundeberg, and K. Uvnas-Moberg. 1996. Oxytocin increases nociceptive thresholds in a long-term perspective in female and male rats. Neurosci. Lett. 212:87-90. crossref(new window)

Rose, H. E., C. D. Cole, Y. Smith, I. D. Neumann, R. Landgraf, A. Z. Murphy, and L. J. Young. 2009. Characterization of the oxytocin system regulating affiliative behavior in female prairie voles. Neuroscience 162:892-903. crossref(new window)

Sato, S., R. Nagamine, and T. Kubo. 1994. Tongue-playing in tethered Japanese Black cattle: diurnal patterns, analysis of variance and behaviour sequences. Appl. Anim. Behav. Sci. 39:39-47. crossref(new window)

Seo, T., S. Sato, K. Kosaka, N. Sakamoto, K. Tokumoto, and K. Katoh. 1998. Development of tongue-playing in artificially reared calves: effects of offering a dummy-teat, feeding of short cut hay and housing system. Appl. Anim. Behav. Sci. 56:1-12.

Suarez, M. M., M. A. Rivarola, S. M. Molina, N. I. Perassi, G. M. Levin, and R. Cabrera. 2001. Periodic maternal deprivation and lesion of anterodorsal thalami nuclei induce alteration on hypophyso adrenal system activity in adult rats. Life Sci. 69:803-813. crossref(new window)

Svanidze, M. D., N. G. Bukiya, and M. P. Butskhrikidze. 2012. Effect of oxytocin on the emotional state and behavior of rats under stress conditions. Neurophysiology 43:365-368. crossref(new window)

Uvnas-Moberg, K., P. Alster, M. Petersson, A. Sohlstrom, and E. Bjorkstrand. 1998. Postnatal oxytocin injections cause sustained weight gain and increased nociceptive thresholds in male and female rats. Pediatr. Res. 43:344-348. crossref(new window)

Veissier, I. and P. Le Neindre. 1989. Weaning in calves: its effects on social organization. Appl. Anim. Behav. Sci. 24:43-54. crossref(new window)

Wagner, K., K. Barth, E. Hillmann, R. Palme, A. Futschik, and A. Waiblinger. 2013. Mother rearing of dairy calves: Reactions to isolation and to confrontation with an unfamiliar conspecific in a new environment. Appl. Anim. Behav. Sci. 147:43-54. crossref(new window)

Winslow, J. T., P. L. Noble, C. K. Lyons, S. M. Sterk, and T. R. Insel. 2003. Rearing effects on cerebrospinal fluid oxytocin concentration and social buffering in rhesus monkeys. Neuropsychopharmacology 28:910-918. crossref(new window)

Wood-Gush, D. G. M., K. Hunt, K. Carson, and S. G. C. Dennison. 1984. The early behaviour of suckler calves in the field. Biol. Behav. 9:295-306.

Yayou, K., S. Ito, E. Kasuya, M. Sutoh, S. Ohkura, and H. Okamura. 2008. Intracerebroventricularly administered oxytocin attenuated cortisol secretion, but not behavioral responses, during isolation in Holstein steers. J. Vet. Med. Sci. 70:665-671. crossref(new window)

Yayou, K., S. Ito, N. Yamamoto, S. Kitagawa, and H. Okamura. 2010. Relationships of stress responses with plasma oxytocin and prolactin in heifer calves. Physiol. Behav. 99:362-369. crossref(new window)