Advanced SearchSearch Tips
Characterization of Bovine NANOG5'-flanking Region during Differentiation of Mouse Embryonic Stem Cells
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characterization of Bovine NANOG5'-flanking Region during Differentiation of Mouse Embryonic Stem Cells
Jang, Hye-Jeong; Park, Hwan Hee; Tran, Thi Thuy Linh; Lee, Hak-Kyo; Song, Ki-Duk; Lee, Woon Kyu;
  PDF(new window)
Embryonic stem cells (ESCs) have been used as a powerful tool for research including gene manipulated animal models and the study of developmental gene regulation. Among the critical regulatory factors that maintain the pluripotency and self-renewal of undifferentiated ESCs, NANOG plays a very important role. Nevertheless, because pluripotency maintaining factors and specific markers for livestock ESCs have not yet been probed, few studies of the NANOG gene from domestic animals including bovine have been reported. Therefore, we chose mouse ESCs in order to understand and compare NANOG expression between bovine, human, and mouse during ESCs differentiation. We cloned a 600 bp (-420/+181) bovine NANOG 5'-flanking region, and tagged it with humanized recombinant green fluorescent protein (hrGFP) as a tracing reporter. Very high GFP expression for bovine NANOG promoter was observed in the mouse ESC line. GFP expression was monitored upon ESC differentiation and was gradually reduced along with differentiation toward neurons and adipocyte cells. Activity of bovine NANOG (-420/+181) promoter was compared with already known mouse and human NANOG promoters in mouse ESC and they were likely to show a similar pattern of regulation. In conclusion, bovine NANOG 5-flanking region functions in mouse ES cells and has characteristics similar to those of mouse and human. These results suggest that bovine gene function studied in mouse ES cells should be evaluated and extrapolated for application to characterization of bovine ES cells.
Bovine;Embryonic Stem Cell;NANOG;Promoter;Neural Differentiation;Adipocyte Differentiation;
 Cited by
Boyer, L. A., T. I. Lee, M. F. Cole, S. E. Johnstone, S. S. Levine, J. P. Zucker, M. G. Guenther, R. M. Kumar, H. L. Murray, R. G. Jenner, D. K. Gifford, D. A. Melton, R. Jaenisch, and R. A. Young. 2005. Core transcriptional regulatory circuitry in human embryonic stem. Cell 122:947-956. crossref(new window)

Buehr, M., S. Meek, K. Blair, J. Yang, J. Ure, J. Silva, R. McLay, J. Hall, Q. L. Ying, and A. Smith. 2008. Capture of authentic embryonic stem cells from rat blastocysts. Cell 135:1287-1298. crossref(new window)

Chambers, I., D. Colby, M. Robertson, J. Nichols, S. Lee, S. Tweedie, and A. Smith. 2003. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643-655. crossref(new window)

Chickarmane, V., C. Troein, U. A. Nuber, H. M. Sauro, and C. Peterson. 2006. Transcriptional dynamics of the embryonic stem cell switch. PLoS Comput. Biol. 2:e123. crossref(new window)

Doetschman, T., P. Williams, and N. Maeda. 1988. Establishment of hamster blastocyst-derived embryonic stem (ES) cells. Dev. Biol. 127:224-227. crossref(new window)

Gerrard, L., D. Zhao, A. J. Clark, and W. Cui. 2005. Stably transfected human embryonic stem cell clones express OCT4-specific green fluorescent protein and maintain self-renewal and pluripotency. Stem Cells 23:124-133. crossref(new window)

Gu, P., D. LeMenuet, A. C. K. Chung, M. Mancini, D. A. Wheeler, and A. J. Cooney. 2005. Orphan nuclear receptor GCNF is required for the repression of pluripotency genes during retinoic acid-induced embryonic stem cell differentiation. Mol. Cell. Biol. 25:8507-8019. crossref(new window)

Hatano, S.Y., M. Tada, H. Kimura, S. Yamaguchi, T. Kono, T. Nakano, H. Suemori, N. Nakatsuji, and T. Tada. 2005. Pluripotential competence of cells associated with Nanog activity. Mech. Dev. 122:67-79. crossref(new window)

Hatoya, S., R. Torii, Y. Kondo, T. Okuno, K. Kobayashi, V. Wijewardana, N. Kawate, H. Tamada, T. Sawada, D. Kumagai, K. Sugiura, and T. Inaba. 2006. Isolation and characterization of embryonic stemlike cells from canine blastocysts. Mol. Reprod. Dev. 73:298-305. crossref(new window)

Hayes, B., S. R. Fagerlie, A. Ramakrishnan, S. Baran, M. Harkey, L. Graf, M. Bar, A. Bendoraite, M. Tewari, and B. Torok-Storb. 2008. Derivation, characterization, and in vitro differentiation of canine embryonic stem cells. Stem Cells 26:465-473. crossref(new window)

Huang, B., T. Li, L. Alonso-Gonzalez, R. Gorre, S. Keatley, A. Green, P. Tumer, P. K. Kallingappa, V. Verma, and B. Oback. 2011. A virus-free poly-promoter vector induces pluripotency in quiescent bovine cells under chemically defined conditions of dual kinase inhibition. PLoS ONE 6:e24501. crossref(new window)

Hamazaki, T., M. Oka, S. Yamanaka, and N. Terada. 2004. Aggregation of embryonic stem cells induces Nanog repression and primitive endoderm differentiation. J. Cell. Sci. 117:5681-5686. crossref(new window)

Kim, M. J., A. Habiba, J. M. Doherty, J. C. Mills, R. W. Mercer, and J. E. Huettner. 2009. Regulation of mouse embryonic stem cell neural differentiation by retinoic acid. Dev. Biol. 328:456-471. crossref(new window)

Keefer, C. L., H. Baldassarre, R. Keyston, B. Wang, B. Bhatia, A. S. Bilodeau, J. F. Zhou, M. Leduc, B. R. Downey, A. Lazaris, and C. N. Karatzas. 2001. Generation of dwarf goat (Capra hircus) clones following nuclear transfer with transfected and nontransfected fetal fibroblasts and in vitro-matured oocytes. Biol. Reprod. 64:849-856. crossref(new window)

Kuroda, T., M. Tada, H. Kubota, H. Kimura, S. Y. Hantano, H. Suemori, N. Nakatsuji, and T. Tada. 2005. Octamer and sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol. Cell. Biol. 25:2475-2485. crossref(new window)

Li, P., C. Tong, R. Mehrian-Shai, L. Jia, N. Wu, Y. Yan, R. E. Maxson, E. N. Schulze, H. Song, C. L. Hsieh, M. F. Pera, and Q. L. Ying. 2008. Germline competent embryonic stem cells derived from rat blastocysts. Cell 135:1299-1310. crossref(new window)

Liu, N., M. Lu, X. Tian, and Z. Han. 2007. Molecular mechanisms involved in self-renewal and pluripotency of embryonic stem cells. J. Cell Physiol. 211:279-286. crossref(new window)

Mitsui, K., Y. Tokuzawa, H. Itoh, K. Segawa, M. Murakami, K. Takahashi, M. Maruyama, M. Maeda, and S. Yamanaka. 2003. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631-642. crossref(new window)

Pain, B., M.E. Clark, M. Shen, H. Nakazawa, M. Sakurai, J. Samarut, and R. J. Etches. 1996. Long-term in vitro culture and characterization of avian embryonic stem cells with multiple morphogenetic potentialities. Development 122:2339-2348.

Okada, Y., T. Shimazaki, G. Sobue, and H. Okano. 2004. Retinoicacid- concentration-dependent acquisition of neural cell identity during in vitro differentiation of mouse embryonic stem cells. Dev. Biol. 275:124-142. crossref(new window)

Okita, K. and S. Yamanaka. 2006. Intracellular signaling pathways regulating pluripotency of embryonic stem cells. Curr. Stem Cell Res. Ther. 1:103-111. crossref(new window)

Rohweddel, J., K. Guan, and A. M. Wobus. 1999. Induction of cellular differentiation by retinoic acid in vitro. Cells Tissues Organs 165:190-202. crossref(new window)

Rodda, D. J., J. L. Chew, L. H. Lim, Y. H. Loh, B. Wang, H. H. Ng, and P. Robson. 2005. Transcriptional Regulation of Nanog by $OCT_4$ and $SOX_2$. J. Biol. Chem. 280:24731-24737. crossref(new window)

Suda, Y., M. Suzuki, Y. Ikawa, and S. Aizawa. 1987. Mouse embryonic stem cells exhibit indefinite proliferative potential. J. Cell. Physiol. 133:197-201. crossref(new window)

Sukoyan, M. A., S. Y. Vatolin, A. N. Golubitsa, A. I. Zhelezova, L. A. Semenova, and O. L. Serov. 1993. Embryonic stem cells derived from morulae, inner cell mass, and blastocysts of mink: Comparisons of their pluripotencies. Mol. Reprod. Dev. 36:148-158. crossref(new window)

Sumer, H., J. Liu, L. F. Malaver-Ortega, M. L. Lim, K. Khodadadi, and P. J. Verma. 2011. Nanog is a key factor for induction of pluripotency in bovine adult fibroblasts. J. Anim. Sci. 89:2708-2716. crossref(new window)

Thomson, J. A., J. Kalishman, T. G. Golos, M. Durning, C. P. Harris, R. A. Becker, and J. P. Heam. 1995. Isolation of a primate embryonic stem cell line. Proc. Natl. Acad. Sci. USA 92:7844-7848. crossref(new window)

Thomson, J. A., J. Itskovitz-Eldor, S. S. Shapiro, M. A.Waknitz, J. J. Swiergiel, V. S. Marshall, and J. M. Jones. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282:1145-1147. crossref(new window)

Vallier, L., S. Mendjan, S. Brown, Z. Chng, A. Teo, L. E. Smithers, M. W. Trotter, C. H. Cho, A. Martinez, P. Rugg-Gunn, G. Brons, and R. A. Pedersen. 2009. Activin/Nodal signaling maintains pluripotency by controlling Nanog expression. Development 136:1339-1349. crossref(new window)

Wobus, A. M. and K. R. Boheler. 2005. Embryonic stem cells: Prospects for developmental biology and cell therapy. Physiol. Rev. 85:635-678. crossref(new window)