Advanced SearchSearch Tips
Effects of Tributyrin on Intestinal Energy Status, Antioxidative Capacity and Immune Response to Lipopolysaccharide Challenge in Broilers
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Tributyrin on Intestinal Energy Status, Antioxidative Capacity and Immune Response to Lipopolysaccharide Challenge in Broilers
Li, Jiaolong; Hou, Yongqing; Yi, Dan; Zhang, Jun; Wang, Lei; Qiu, Hongyi; Ding, Binying; Gong, Joshua;
  PDF(new window)
This study was carried out to investigate the effects of tributyrin (TB) on the growth performance, pro-inflammatory cytokines, intestinal morphology, energy status, disaccharidase activity, and antioxidative capacity of broilers challenged with lipopolysaccharide (LPS). A total of 160 one-day-old Cobb broilers were allocated to 1 of 4 treatments, with 4 replicated pens per treatment and 10 birds per pen. The experiment consisted of a factorial arrangements of treatments with TB supplementation (0 or 500 mg/kg) and LPS challenge (0 or body weight [BW]). On days 22, 24, and 26 of the trial, broilers received an intraperitoneal administration of BW LPS or saline. Dietary TB showed no effect on growth performance. However, LPS challenge decreased the average daily gain of broilers from day 22 to day 26 of the trial. Dietary TB supplementation inhibited the increase of interleukin- (in the jejunum and ileum), interleukin-6 (in the duodenum and jejunum), and prostaglandin (in the duodenum) of LPS-challenged broilers. Similar inhibitory effects of TB in the activities of total nitric oxide synthase (in the ileum) and inducible nitric oxide synthase (in the jejunum) were also observed in birds challenged with LPS. Additionally, TB supplementation mitigated the decrease of ileal adenosine triphosphate, adenosine diphosphate and total adenine nucleotide and the reduction of jejunal catalase activity induced by LPS. Taken together, these results suggest that the TB supplementation was able to reduce the release of pro-inflammatory cytokines and improve the energy status and anti-oxidative capacity in the small intestine of LPS-challenged broilers.
Tributyrin;Lipopolysaccharide;Intestine;Immune Response;Broilers;
 Cited by
Response of Ross 308 and 708 broiler strains in growth performance and lipid metabolism to diets containing tributyrate glycerides, Canadian Journal of Animal Science, 2017, 1918-1825  crossref(new windwow)
Bergmeyer, H. U. 1984. Methods of Enzymatic Analysis. 3rd edn. Verlag Chemie, Weinheim, Germany.

Blikslager, A. T., A. J. Moeser, J. L.Gookin, S. L.Jones, and J. Odle. 2007. Restoration of barrier function in injured intestinal mucosa. Physiol. Rev. 87:545-564. crossref(new window)

Chung, Y. S., I. S. Song, R. H. Erickson, M. H. Sleisenger, and Y. S. Kim. 1985. Effect of growth and sodium butyrate on brush bordermembrane-associated hydrolases in human colorectal cancer cell lines. Cancer Res. 45:2976-2982.

Claus, R., D. Günthner, and H. Letzguss. 2007. Effects of feeding fat-coated butyrate on mucosal morphologyand function in the small intestine of the pig. J. Anim. Physiol. Anim. Nutr. 91:312-318. crossref(new window)

Czerwinski, J., O. Hojberg, S. Smulikowska, R. M. Engberg, and A. Mieczkowska. 2012. Effects of sodium butyrate and salinomycin upon intestinal microbiota, mucosal morphology and performance of broiler chickens. Arch. Anim. Nutr. 66:102-116. crossref(new window)

Davis, R. E. 1930. The metabolism of tributyrin. J. Biol. Chem. 88:67-75.

Donohoe, D. R., N. Garge, X. Zhang, W. Sun, T. M. O'Connell, M. K. Bunger, and S.J.Bultman. 2011. Themicrobiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13:517-526. crossref(new window)

Feingold, K. R., Y. Wang, A. Moser, J. K. Shigenaga, and C.Grunfeld. 2008. LPS decreases fatty acid oxidation and nuclear hormone receptors in the kidney. J. Lipid Res. 49:2179-2187. crossref(new window)

Fusunyan, R. D., J. J. Quinn, M. Fujimoto, R. P. MacDermott, and I. R. Sanderson. 1999. Butyrate switches the pattern of chemokine secretion by intestinal epithelial cells through histone acetylation. Mol. Med. 5:631-640.

Hou, Y., K.Yao, L.Wang, B. Ding, D. Fu, Y. Liu, H. Zhu, J. Liu, Y. Li, P. Kang, Y. Yin, and G. Wu. 2011. Effects of aketoglutarate on energy status in the intestinal mucosa of weaned piglets chronically challenged with lipopolysaccharide. Br. J. Nutr. 106:357-363. crossref(new window)

Hou, Y., L. Wang, B. Ding, Y. Liu, H. Zhu, J. Liu, Y. Li, X. Wu, Y. Yin, and G.Wu. 2010. Dietary $\alpha$-ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets. Amino Acids 39:555-564. crossref(new window)

Hou, Y., L. Wang, D. Yi, B. Ding, Z. Yang, J. Li, X. Chen, Y. Qiu, and G. Wu. 2013. N-acetylcysteine reduces inflammation in the small intestine by regulating redox, EGF and TLR4 signaling. Amino Acids 45:513-522. crossref(new window)

Hu, X. F., Y. M.Guo, J. H. Li, G. L. Yan, S. Bun, and B. Y. Huang. 2011. Effects of an early lipopolysaccharide challenge on growth and small intestinal structure and function of broiler chickens. Can. J. Anim. Sci. 91:379-384. crossref(new window)

Jerzsele, A., K. Szeker, R. Csizinsky, E. Gere, C. Jakab, J. J. Mallo, and P. Galfi. 2012. Efficacy of protectedsodium butyrate, a protected blend of essential oils, their combination, and Bacillus amyloliquefaciens spore suspension against artificially induced necrotic enteritis in broilers. Poult. Sci. 91:837-843. crossref(new window)

Kotunia, A., J. Wolinski, D. Laubitz, M. Jurkowska, V. Romé, P. Guilloteau, and R. Zabielski. 2004. Effect of sodium butyrate on the small intestine development in neonatal pignets feed by artificial sow. J. Physiol. Pharmacol. 55(Suppl 2):59-68.

Leeson, S., H. Namkung, M. Antongiovanni, and E. H. Lee. 2005. Effect of butyric acid on the performanceand carcass yield of broiler chickens. Poult. Sci. 84:1418-1422. crossref(new window)

Lehmann, G. L., F. I. Carreras, L. R.Soria, S. A.Gradilone, and R. A. Marinelli.2008. LPS induces the TNF-alpha-mediated downregulation of rat liver aquaporin-8: Role in sepsisassociated cholestasis. Am. J. Physiol.Gastrointest. Liver Physiol. 294:G567-G575. crossref(new window)

Lu, J. J., X. T. Zou, and Y. M. Wang. 2008. Effects of sodium butyrate on the growth performance, intestinal microflora and morphology of weanling pigs. J. Anim. Feed Sci. 17:568-578. crossref(new window)

Mahdavi, R. and M.Torki. 2009. Study on usage period of dietary protected butyric acid on performance, carass characteristics, serum metabolite levels and humoral immune response of broiler chickens. J. Anim. Vet. Adv. 8:1702-1709.

Mallo, J. J., A. Balfagon, M. I. Gracia, P. Honrubia, and M. Puyalto. 2012. Evaluation of different protections of butyric acid aiming for release in the last part of the gastrointestinal tract of piglets. J. Anim. Sci. 90(Suppl4):227-229. crossref(new window)

Manzanilla, E. G., M. Nofrarias, M. Anguita, M. Castillo, J. F. Perez, S. M. Martin-Orue, C. Kamel, and J.Gasa. 2006. Effects of butyrate, avilamycin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs. J. Anim. Sci. 84:2743-2751. crossref(new window)

Namkung, H., H. Yu, J. Gong, and S. Leeson. 2011. Antimicrobial activity of butyrate glycerides toward Salmonella Typhimurium and Clostridium perfringens. Poult. Sci. 90:2217-2222. crossref(new window)

Nancey, S., J. Bienvenu, B. Coffin, F. Andre, L. Descos, and B. Flourie. 2002. Butyrate strongly inhibits in vitro stimulated release of cytokines in blood. Dig. Dis. Sci. 47:921-928. crossref(new window)

Ogawa, H., P. Rafiee, P. J. Fisher, N. A. Johnson, M. F. Otterson, and D. G. Binion. 2003. Butyrate modulates gene and protein expression in human intestinal endothelial cells. Biochem. Biophys. Res. Commun. 309:512-519. crossref(new window)

Panda, A. K., S. V. Rama Rao, M. V. L. N. Raju, and G. Sunder Sunder. 2009. Effect of butyric acid on performance, gastrointestinal tract health and carcass characteristics in broiler chickens. Asian Australas. J. Anim. Sci. 22:1026-1031. crossref(new window)

Parka., J. S., M. S. Woo, S. Y. Kim, W. K. Kim, and H. S. Kim. 2005. Repression of interferon-$\gamma$-induced inducible nitric oxide synthase (iNOS) gene expression in microglia by sodium butyrate is mediated through specific inhibition of ERK signaling pathways. J. Neuroimmunol. 168:56-64. crossref(new window)

Sauer, J., K. K. Richter, and B. L. Pool-Zobel. 2007. Physiological concentrations of butyrate favorably modulate genes of oxidative and metabolic stress in primary human colon cells. J. Nutr. Biochem. 18:736-745. crossref(new window)

Subcommittee on Poultry Nutrition, Board on Agriculture, National Research Council. 1994. Nutrient Requirements of Poultry: Ninth Revised Edition. National Academy of Science. Washington, DC, USA.

Wang, W. W., S. Y. Qiao, and D. F. Li. 2009. Amino acids and gut function. Amino Acids 37:105-110. crossref(new window)

Weisbrodt, N. W., T. A. Pressley, Y. F. Li, M. J. Zembowicz, S. C. Higham, A. Zembowicz, R. F. Lodato, and F. G. Moody. 1996. Decreased ileal muscle contractility and increased NOS II expression induced by lipopolysaccharide. Am. J. Physiol. 271:G454-G460.

Wu, Q. J., Y. M. Zhou, Y. N. Wu, L. L. Zhang, and T. Wang. 2013. The effects of natural and modified clinoptilolite on intestinal barrier function and immune response to LPS in broiler chickens. Vet. Immunol. Immunopathol. 153:70-76. crossref(new window)

Xu, Z. R., C. H. Hu, M. S. Xia, X. A. Zhan, and M. Q. Wang. 2003. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poul. Sci. 82:1030-1036. crossref(new window)

Yi, D., Y. Hou, L. Wang, B. Ding, Z. Yang, J. Li, M. Long, Y. Liu, and G. Wu. 2014. Dietary N-acetylcysteine supplementation alleviates liver injury in lipopolysaccharide-challenged piglets. Br. J. Nutr. 111:46-54. crossref(new window)

Zhang, W. H., Y. Jiang, Q. F. Zhu, F. Gao, S. F. Dai, J. Chen, and G. H. Zhou. 2011. Sodium butyrate maintains growth performance by regulating the immune response in broiler chickens. Br. Poult. Sci. 52:292-301. crossref(new window)

Zhang, X., L. Zhao, F. Cao, H. Ahmad, G. Wang, and T. Wang. 2013. Effects of feeding fermented Ginkgo biloba leaves on small intestinal morphology, absorption, and immunomodulation of early lipopolysaccharide-challenged chicks. Poult. Sci. 92:119-130. crossref(new window)

Zhu, H. L., L. L. Hu, Y. Q. Hou, J. Zhang, and B. Y.Ding. 2014. The effects of enzyme supplementation on performance and digestive parameters of broilers fed corn-soybean diets. Poult. Sci. 93:1704-1712. crossref(new window)