Advanced SearchSearch Tips
The Prediction of the Expected Current Selection Coefficient of Single Nucleotide Polymorphism Associated with Holstein Milk Yield, Fat and Protein Contents
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Prediction of the Expected Current Selection Coefficient of Single Nucleotide Polymorphism Associated with Holstein Milk Yield, Fat and Protein Contents
Lee, Young-Sup; Shin, Donghyun; Lee, Wonseok; Taye, Mengistie; Cho, Kwanghyun; Park, Kyoung-Do; Kim, Heebal;
  PDF(new window)
Milk-related traits (milk yield, fat and protein) have been crucial to selection of Holstein. It is essential to find the current selection trends of Holstein. Despite this, uncovering the current trends of selection have been ignored in previous studies. We suggest a new formula to detect the current selection trends based on single nucleotide polymorphisms (SNP). This suggestion is based on the best linear unbiased prediction (BLUP) and the Fisher's fundamental theorem of natural selection both of which are trait-dependent. Fisher's theorem links the additive genetic variance to the selection coefficient. For Holstein milk production traits, we estimated the additive genetic variance using SNP effect from BLUP and selection coefficients based on genetic variance to search highly selective SNPs. Through these processes, we identified significantly selective SNPs. The number of genes containing highly selective SNPs with p-value <0.01 (nearly top 1% SNPs) in all traits and p-value <0.001 (nearly top 0.1%) in any traits was 14. They are phosphodiesterase 4B (PDE4B), serine/threonine kinase 40 (STK40), collagen, type XI, alpha 1 (COL11A1), ephrin-A1 (EFNA1), netrin 4 (NTN4), neuron specific gene family member 1 (NSG1), estrogen receptor 1 (ESR1), neurexin 3 (NRXN3), spectrin, beta, non-erythrocytic 1 (SPTBN1), ADP-ribosylation factor interacting protein 1 (ARFIP1), mutL homolog 1 (MLH1), transmembrane channel-like 7 (TMC7), carboxypeptidase X, member 2 (CPXM2) and ADAM metallopeptidase domain 12 (ADAM12). These genes may be important for future artificial selection trends. Also, we found that the SNP effect predicted from BLUP was the key factor to determine the expected current selection coefficient of SNP. Under Hardy-Weinberg equilibrium of SNP markers in current generation, the selection coefficient is equivalent to effect.
Best Linear Unbiased Prediction [BLUP];Expected Current Relative Selection Coefficient;Fisher's Fundamental Theorem of Natural Selection;Holstein;Milk Production Trait;Single Nucleotide Polymorphism-Genomic Best Linear Unbiased Prediction [SNP-GBLUP];
 Cited by
Benjamini, Y. and Y. Hochberg. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57:289-300.

Bindea, G., B. Mlecnik, H. Hackl, P. Charoentong, M. Tosolini, A. Kirilovsky, W.-H. Fridman, F. Pages, Z. Trajanoski, and J. Galon. 2009. Cluego: A cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091-1093. crossref(new window)

Boitard, S. and D. Rocha. 2013. Detection of signatures of selective sweeps in the blonde d'aquitaine cattle breed. Anim. Genet. 44:579-583. crossref(new window)

Browning, B. L. and S. R. Browning. 2009. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet. 84:210-223. crossref(new window)

Catillo, G., B. Moioli, and F. Napolitano. 2001. Estimation of genetic parameters of some productive and reproductive traits in italian buffalo. Genetic evaluation with blup-animal model. Asian Australas. J. Anim. Sci. 14:747-753. crossref(new window)

Endelman, J. B. 2011. Ridge regression and other kernels for genomic selection with R package rrblup. Plant. Genome. 4:250-255. crossref(new window)

Ewens, W. J. 1989. An interpretation and proof of the fundamental theorem of natural selection. Theor. Popul. Biol. 36:167-180. crossref(new window)

Flicek, P., M. R. Amode, D. Barrell, K. Beal, S. Brent, D. Carvalho-Silva, P. Clapham, G. Coates, S. Fairley, and S. Fitzgerald et al. 2011. Ensembl 2012. Nucl. Acids Res. doi: 10.1093/nar/gkr991. crossref(new window)

Frank, S. A. and M. Slatkin. 1992. Fisher's fundamental theorem of natural selection. Trends. Ecol. Evol. 7:92-95. crossref(new window)

Goddard, M., B. J. Hayes, and T. H. E. Meuwissen. 2011. Using the genomic relationship matrix to predict the accuracy of genomic selection. J. Anim. Breed. Genet. 128:409-421. crossref(new window)

Goddard, M. E. and B. Hayes. 2007. Genomic selection. J. Anim. Breed. Genet. 124:323-330. crossref(new window)

Hartl, D. L. 1988. A Primer of Population Genetics. Sinauer Associates, Inc., Sunderland, MA, USA.

Henderson, C. R. 1975. Best linear unbiased estimation and prediction under a selection model. Biometrics 31:423-447. crossref(new window)

Lee, Y.-S., H.-J. Kim, S. Cho, and H. Kim. 2014. The usage of an SNP-SNP relationship matrix for best linear unbiased prediction (BLUP) analysis using a community-based cohort study. Genomics Inform. 12:254-260. crossref(new window)

Mwai, O., O. Hanotte, Y.-J. Kwon, and S. Cho. 2015. African Indigenous Cattle: Unique Genetic Resources in a Rapidly Changing World. Asian Australas. J. Anim. Sci. 28:911-921. crossref(new window)

Penzes, P., A. Beeser, J. Chernoff, M. R. Schiller, B. A. Eipper, R. E. Mains, and R. L. Huganir. 2003. Rapid induction of dendritic spine morphogenesis by trans-synaptic EphrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron 37:263-274. crossref(new window)

Price, G. R. 1972. Fisher's 'fundamental theorem' made clear. Ann. Hum. Genet. 36:129-140. crossref(new window)

Shannon, P., A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski, and T. Ideker. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498-2504. crossref(new window)

Skjervold, H. and H. J. Langholz. 1964. Factors affecting the optimum structure of A. I. breeding in dairy cattle. Z. Tierz. Zuchtungsbio 80:25-40.

Smith, J. M. and J. Haigh. 1974. The hitch-hiking effect of a favourable gene. Genet. Res. 23:23-35. crossref(new window)

Tada, T. and M. Sheng. 2006. Molecular mechanisms of dendritic spine morphogenesis. Curr. Opin. Neurobiol. 16:95-101. crossref(new window)