Advanced SearchSearch Tips
Variance Component Quantitative Trait Locus Analysis for Body Weight Traits in Purebred Korean Native Chicken
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Variance Component Quantitative Trait Locus Analysis for Body Weight Traits in Purebred Korean Native Chicken
Cahyadi, Muhammad; Park, Hee-Bok; Seo, Dong-Won; Jin, Shil; Choi, Nuri; Heo, Kang-Nyeong; Kang, Bo-Seok; Jo, Cheorun; Lee, Jun-Heon;
  PDF(new window)
Quantitative trait locus (QTL) is a particular region of the genome containing one or more genes associated with economically important quantitative traits. This study was conducted to identify QTL regions for body weight and growth traits in purebred Korean native chicken (KNC). F1 samples (n = 595) were genotyped using 127 microsatellite markers and 8 single nucleotide polymorphisms that covered 2,616.1 centi Morgan (cM) of map length for 26 autosomal linkage groups. Body weight traits were measured every 2 weeks from hatch to 20 weeks of age. Weight of half carcass was also collected together with growth rate. A multipoint variance component linkage approach was used to identify QTLs for the body weight traits. Two significant QTLs for growth were identified on chicken chromosome 3 (GGA3) for growth 16 to18 weeks (logarithm of the odds [LOD] = 3.24, Nominal p value = 0.0001) and GGA4 for growth 6 to 8 weeks (LOD = 2.88, Nominal p value = 0.0003). Additionally, one significant QTL and three suggestive QTLs were detected for body weight traits in KNC; significant QTL for body weight at 4 weeks (LOD = 2.52, nominal p value = 0.0007) and suggestive QTL for 8 weeks (LOD = 1.96, Nominal p value = 0.0027) were detected on GGA4; QTLs were also detected for two different body weight traits: body weight at 16 weeks on GGA3 and body weight at 18 weeks on GGA19. Additionally, two suggestive QTLs for carcass weight were detected at 0 and 70 cM on GGA19. In conclusion, the current study identified several significant and suggestive QTLs that affect growth related traits in a unique resource pedigree in purebred KNC. This information will contribute to improving the body weight traits in native chicken breeds, especially for the Asian native chicken breeds.
Body Weight;Growth;Quantitative Trait Locus;Purebred;Korean Native Chicken;
 Cited by
Abasht, B. and S. J. Lamont. 2007. Genome-wide association analysis reveals cryptic alleles as an important factor in heterosis for fatness in chicken F2 population. Anim. Genet. 38:491-498. crossref(new window)

Almasy, L. and J. Blangero. 2010. Variance Component Methods for Analysis of Complex Phenotypes. Cold Spring Harb. Protoc. http:/ crossref(new window)

Andersson, L. and M. Georges. 2004. Domestic-animal genomics: Deciphering the genetics of complex traits. Nat. Rev. Genet. 5:202-212. crossref(new window)

Atzmon, G., S. Blum, M. Feldman, A. Cahaner, U. Lavi, and J. Hillel. 2008. QTLs detected in a multigenerational resource chicken population. J. Hered. 99:528-538. crossref(new window)

Cahyadi, M., C. Jo, and J. H. Lee. 2014. Quantitative trait loci and candidate genes for the economic traits in meat-type chicken. Worlds Poult. Sci. J. 70:329-342. crossref(new window)

Cahyadi, M., D. W. Seo, S. Jin, N. Choi, H. B. Park, K. N. Heo, B. S. Kang, C. Jo, and J. H. Lee. 2013. Association of SNPs in ODC and PRDM16 with Body Weight Traits in Korean Native Chicken. Korean J. Poult. Sci. 40:157-162. crossref(new window)

Cho, E. S., W. H. Chung, J. W. Choi, H. J. Jang, M. N. Park, N. Kim, T. H. Kim, and K. T. Lee. 2014. Genome-wide copy number variation in a Korean native chicken breed. Korean J. Poult. Sci. 41:305-311. crossref(new window)

Groenen, M. A., H. H. Cheng, N. Bumstead, B. F. Benkel, W. E. Briles, T. Burke, D. W. Burt, L. B. Crittenden, J. Dodgson, J. Hillel, S. Lamont, A. P. de Leon, M. Soller, H. Takahashi, and A. Vignal. 2000. A consensus linkage map of the chicken genome. Genome Res. 10:137-147.

Hinsby, A. M., J. V. Olsen, and M. Mann. 2004. Tyrosine phosphoproteomics of fibroblast growth factor signaling: A role for insulin receptor substrate-4. J. Biol. Chem. 279:46438-46447. crossref(new window)

Ikeobi, C. O. N., J. A. Woolliams, D. R. Morrice, A. Law, D. Windsor, D. W. Burt, and P. M. Hocking. 2004. Quantitative trait loci for meat yield and muscle distribution in a broiler layer cross. Livest. Prod. Sci. 87:143-151. crossref(new window)

Jacobsson, L., H. B. Park, P. Wahlberg, R. Fredriksson, M. Perez- Enciso, P. B. Siegel, and L. Andersson. 2005. Many QTLs with minor additive effects are associated with a large difference in growth between two selection lines in chickens. Genet. Res. 86:115-125. crossref(new window)

Jeon, H. J., J. H. Choe, Y. K. Jung, Z. A. Kruk, D. G. Lim, and C. Jo. 2010. Comparison of the chemical composition, textural characteristics, and sensory properties of North and South Korean native chickens and commercial broilers. Korean J. Food Sci. Ani. Resour. 30:171-178. crossref(new window)

Jin, S., H. B. Park, D. W. Seo, M. Cahyadi, N. R. Choi, K. N. Heo, C. Jo, and J. H. Lee. 2014. Association of MC1R genotypes with shank color traits in Korean native chicken. Livest. Sci. 170:1-7. crossref(new window)

Lander, E. S. and D. Botstein. 1989. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185-199.

Liu, R., Y. Sun, G. Zhao, F. Wang, D. Wu, M. Zheng, J. Chen, L. Zhang, Y. Hu, and J. Wen. 2013. Genome-wide association study identifies Loci and candidate genes for body composition and meat quality traits in Beijing-You chickens. PLoS One. 8:e61172. crossref(new window)

Piepho, H. P. 2001. A quick method for computing approximate thresholds for quantitative trait loci detection. Genetics 157:425-432.

Podisi, B. K., S. A. Knott, D. W. Burt, and P. M. Hocking. 2013. Comparative analysis of quantitative trait loci for body weight, growth rate and growth curve parameters from 3 to 72 weeks of age in female chickens of a broiler-layer cross. BMC Genet. 14:22.

Sadagurski, M., X. C. Dong, M. G. Myers Jr., and M. F. White. 2014. IRS2 and IRS4 synergize in non-LepRb neurons to control energy balance and glucose homeostasis. Mol. Metab. 3:55-63. crossref(new window)

Schreiweis, M. A., P. Y. Hester, and D. E. Moody. 2005. Identification of quantitative trait loci associated with bone traits and body weight in an F2 resource population of chickens. Genet. Sel. Evol. 37:677-698. crossref(new window)

Seo, D. W., M. R. Hoque, N. R. Choi, H. Sultana, H. B. Park, K. N. Heo, B. S. Kang, H. T. Lim, S. H. Lee, C. Jo, and J. H. Lee. 2013. Discrimination of Korean native chicken lines using fifteen selected microsatellite markers. Asian Australas. J. Anim. Sci. 26:316-322. crossref(new window)

Seo, D. W., J. D. Oh, S. Jin, K. D. Song, H. B. Park, K. N. Heo, Y. Shin, M. Jung, J. Park, C. Jo, H. K. Lee, and J. H. Lee. 2015a. Single nucleotide polymorphism analysis of Korean native chickens using next generation sequencing data. Mol. Biol. Rep. 42:471-477. crossref(new window)

Seo, D. W., H. B. Park, N. R. Choi, S. Jin, C. K. Yoo, H. Sultana, K. N. Heo, C. Jo, and J. H. Lee. 2015b. Construction of genetic linkage map using microsatellite and SNP markers in Korean native chicken. Korean J. Poult. Sci. 42:77-86. crossref(new window)

Sheng, Z., M. E. Pettersson, X. Hu, C. Luo, H. Qu, D. Shu, X. Shen, O. Carlborg, and N. Li. 2013. Genetic dissection of growth traits in a Chinese indigenousxcommercial broiler chicken cross. BMC Genomics. 14:151. crossref(new window)

Tercic, D., A. Holcman, P. Dovc, D. R. Morrice, D. W. Burt, P. M. Hocking, and S. Horvat. 2009. Identification of chromosomal regions associated with growth and carcass traits in an F (3) full sib intercross line originating from a cross of chicken lines divergently selected on body weight. Anim. Genet. 40:743-748. crossref(new window)

Tsudzuki, M., S. Onitsuka, R. Akiyama, M. Iwamizu, N. Goto, M. Nishibori, H. Takahashi, and A. Ishikawa. 2007. Identification of quantitative trait loci affecting shank length, body weight and carcass weight from the Japanese cockfighting chicken breed, Oh-Shamo Japanese Large Game. Cytogenet. Genome Res. 117:288-295. crossref(new window)

Uemoto, Y., S. Sato, T. Ohtake, S. Sato, Y. Okumura, and E. Kobayashi. 2011. Ornithine decarboxylase gene is a positional candidate gene affecting growth and carcass traits in F2 intercross chickens. Poult. Sci. 90:35-41. crossref(new window)

Vignal, A., D. Milan, M. SanCristobal, and A. Eggen. 2002. A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Sel. Evol. 34:275-305. crossref(new window)

Wang, S. Z., X. X. Hu, Z. P. Wang, X. C. Li, Q. G. Wang, Y. X. Wang, Z. Q. Tang, and H. Li. 2012. Quantitative trait loci associated with body weight and abdominal fat traits on chicken chromosomes 3, 5 and 7. Genet. Mol. Res. 11:956-965. crossref(new window)

Wahlberg, P., O. Carlborg, M. Foglio, X. Tordoir, A. C. Syvanen, M. Lathrop, I. G. Gut, P. B. Siegel, and L. Andersson. 2009. Genetic analysis of an F2 intercross between two chicken lines divergently selected for body-weight. BMC Genomics 10:248-262. crossref(new window)

Zhang, H., S. H. Liu, Q. Zhang, Y. D. Zhang, S. Z. Wang, Q. G. Wang, Y. X. Wang, Z. Q. Tang, and H. Li. 2011. Fine-mapping of quantitative trait loci for body weight and bone traits and positional cloning of the RB1 gene in chicken. J. Anim. Breed. Genet. 128:366-375. crossref(new window)