JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Dynamics Associated with Prolonged Ensiling and Aerobic Deterioration of Total Mixed Ration Silage Containing Whole Crop Corn
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Dynamics Associated with Prolonged Ensiling and Aerobic Deterioration of Total Mixed Ration Silage Containing Whole Crop Corn
Wang, Huili; Ning, Tingting; Hao, Wei; Zheng, Mingli; Xu, Chuncheng;
  PDF(new window)
 Abstract
This study investigated the dynamics associated with prolonged ensiling and aerobic deterioration of whole crop corn (WCC) silages and total mixed ration (TMR) silages containing WCC (C-TMR silages) to clarify the differences that account for the enhanced aerobic stability of TMR silages. Laboratory-scale barrel silos were randomly opened after 7, 14, 28, and 56 d of ensiling and were subjected to analyses of fermentation quality, microbial and temperature dynamics during aerobic exposure. WCC and C-TMR silages were both well preserved and microorganisms were inhibited with prolonged ensiling, including lactic acid bacteria. Yeast were inhibited to below the detection limit of 500 cfu/g fresh matter within 28 d of ensiling. Aerobic stability of both silages was enhanced with prolonged ensiling, whereas C-TMR silages were more aerobically stable than WCC silages for the same ensiling period. Besides the high moisture content, the weak aerobic stability of WCC silage is likely attributable to the higher lactic acid content and yeast count, which result from the high water-soluble carbohydrates content in WCC. After silo opening, yeast were the first to propagate and the increase in yeast levels is greater than that of other microorganisms in silages before deterioration. Besides, increased levels of aerobic bacteria were also detected before heating of WCC silages. The temperature dynamics also indicated that yeast are closely associated with the onset of the aerobic deterioration of C-TMR silage, whereas for WCC silages, besides yeast, aerobic bacteria also function in the aerobic deterioration. Therefore, the inclusion of WCC might contribute to the survival of yeast during ensiling but not influence the role of yeast in deterioration of C-TMR silages.
 Keywords
Total Mixed Ration;Silage;Aerobic Stability;Deterioration;Yeast;
 Language
English
 Cited by
 References
1.
AOAC. 1990. Offcial Methods of Analysis. 15th Edn. Association of Official Analytical Chemists, Arlington, VA, USA.

2.
Filya, I. 2003. The effect of Lactobacillus buchneri, with or without homofermentative lactic acid bacteria, on the fermentation, aerobic stability and ruminal degradability of wheat, sorghum and maize silages. J. Appl. Microbiol. 95:1080-1086. crossref(new window)

3.
Hao, W., H. L. Wang, T. T. Ning, F. Y. Yang, and C. C. Xu. 2015. Aerobic stability and succession of yeasts during deterioration of non-fermented and fermented total mixed ration with different moisture levels. Asian Australas. J. Anim. Sci. 28:816-826. crossref(new window)

4.
Henderson, A. R., P. McDonald, and M. K. Woolford. 1972. Chemical changes and losses during the ensilage of wilted grass treated with formic acid. J. Sci. Food Agric. 23:1079-1087. crossref(new window)

5.
Heron, S. J. E., J. F. Wilkinson, and C. M. Duffus. 1993. Enterobacteria associated with grass and silages. J. Appl. Bacteriol. 75:13-17. crossref(new window)

6.
Hu, X., W. Hao, H. Wang, T. Ning, M. Zheng, and C. Xu. 2015. Fermentation characteristics and lactic acid bacteria succession of total mixed ration silages formulated with peach pomace. Asian Australas. J. Anim. Sci. 28:502-510. crossref(new window)

7.
McDonald, P. 1981. The biochemistry of silage. John Wiley & Sons, Ltd., New York, NY, USA.

8.
McDonald, P., A. R. Henderson, and S. J. E. Heron. 1991. The biochemistry of silage. 2nd Ed. Chalcombe Publications, Welton, UK.

9.
Nishino, N., H. Harada, and E. Sakaguchi. 2003. Evaluation of fermentation and aerobic stability of wet brewers' grains ensiled alone or in combination with various feeds as a total mixed ration. J. Sci. Food Agric. 83:557-563. crossref(new window)

10.
Ohyama, Y., S. Masaki, and S. I. Hara. 1975. Factors influencing aerobic deterioration of silages and changes in chemical composition after opening silos. J. Sci. Food Agric. 26:1137-1147. crossref(new window)

11.
Owens, V. N., K. A. Albrecht, R. E. Muck, and S. H. Duke. 1999. Protein degradation and fermentation characteristics of red clover and alfalfa silage harvested with varying levels of total nonstructural carbohydrates. Crop Sci. 39:1873-1880. crossref(new window)

12.
Pahlow, G., R. E. Muck, F. Driehuis, S. J. Elferink, and S. F. Spoelstra. 2003. Microbiology of ensiling. In: Silage science and technology (Eds. D. R. Buxton, R. E. Muck, and J. H. Harrison). American Society of Agronomy, Madison, Wi, USA. pp. 31-93.

13.
Ranjit, N. K. and L Jr. Kung. 2000. The effect of Lactobacillus buchneri, Lactobacillus plantarum, or a chemical preservative on the fermentation and aerobic stability of corn silage. J. Dairy Sci. 83:526-535. crossref(new window)

14.
Rooke, J. A. and R. D. Hatfield. 2003. Biochemistry of ensiling. In: Silage Science and Technology (Eds. D. R. Buxton, R. E. Muck, and J. H. Harrison). American Society of Agronomy, Madison, WI, USA. pp. 95-139.

15.
Seppala, A., T. Heikkila, M. Maki, H. Miettinen, and M. Rinne. 2013. Controlling aerobic stability of grass silage-based total mixed rations. Anim. Feed Sci. Technol. 179:54-60. crossref(new window)

16.
Smith, L. H. 1962. Theoretical carbohydrates requirement for alfalfa silage production. Agron. J. 54:291-293. crossref(new window)

17.
Spoelstra, S. F., M. G. Courtin, and J. A. C. Van Beers. 1988. Acetic acid bacteria can initiate aerobic deterioration of whole crop maize silage. J. Agric. Sci. 111:127-132. crossref(new window)

18.
Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. crossref(new window)

19.
Wilkinson, J. M. and D. R. Davies. 2013. The aerobic stability of silage: Key findings and recent developments. Grass Forage Sci. 68:1-19. crossref(new window)

20.
Woolford, M. 1990. The detrimental effects of air on silage. J. Appl. Microbiol. 68:101-116.

21.
Xu, C., Y. Cai, N. Moriya, and M. Ogawa. 2007a. Nutritive value for ruminants of green tea grounds as a replacement of brewers' grains in totally mixed ration silage. Anim. Feed Sci. Technol. 138:228-238. crossref(new window)

22.
Xu, C. C., Y. Cai, J. G. Zhang, and M. Ogawa. 2007b. Fermentation quality and nutritive value of a total mixed ration silage containing coffee grounds at ten or twenty percent of dry matter. J. Anim. Sci. 85:1024-1029.