JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Resveratrol-loaded Nanoparticles Induce Antioxidant Activity against Oxidative Stress
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Resveratrol-loaded Nanoparticles Induce Antioxidant Activity against Oxidative Stress
Kim, Jae-Hwan; Park, Eun-Young; Ha, Ho-Kyung; Jo, Chan-Mi; Lee, Won-Jae; Lee, Sung Sill; Kim, Jin Wook;
  PDF(new window)
 Abstract
Resveratrol acts as a free radical scavenger and a potent antioxidant in the inhibition of numerous reactive oxygen species (ROS). The function of resveratrol and resveratrol-loaded nanoparticles in protecting human lung cancer cells (A549) against hydrogen peroxide was investigated in this study. The 2,2`-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay was performed to evaluate the antioxidant properties. Resveratrol had substantially high antioxidant capacity (trolox equivalent antioxidant capacity value) compared to trolox and vitamin E since the concentration of resveratrol was more than . Nanoparticles prepared from -lactoglobulin (-lg) were successfully developed. The -lg nanoparticle showed 60 to 146 nm diameter in size with negatively charged surface. Non-cytotoxicity was observed in Caco-2 cells treated with -lg nanoparticles. Fluorescein isothiocynate-conjugated -lg nanoparticles were identified into the cell membrane of Caco-2 cells, indicating that nanoparticles can be used as a delivery system. Hydrogen peroxide caused accumulation of ROS in a dose- and time-dependent manner. Resveratrol-loaded nanoparticles restored -induced ROS levels by induction of cellular uptake of resveratrol in A549 cells. Furthermore, resveratrol activated nuclear factor erythroid 2-related factor 2-Kelch ECH associating protein 1 (Nrf2-Keap1) signaling in A549 cells, thereby accumulation of Nrf2 abundance, as demonstrated by western blotting approach. Overall, these results may have implications for improvement of oxidative stress in treatment with nanoparticles as a biodegradable and non-toxic delivery carrier of bioactive compounds.
 Keywords
Resveratrol;Nanoparticle;Oxidative Stress;-Lactoglobulin;Caco-2 Cell;
 Language
English
 Cited by
 References
1.
Aggarwal, B. B., S. Shishodia, C. de la Lastra, I. Villegas, and A. R. Martin. 2006. Resveratrol in Health and Disease. CRC Press, Boca Raton, FL, USA. pp. 33-54.

2.
Beckman, J. S. and W. H. Koppenol. 1996. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol. 271:C1424-1437.

3.
Bravo, L. 1998. Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutr. Rev. 56:317- 333.

4.
Chen, L. and M. Subirade. 2005. Chitosan/${\beta}$-lactoglobulin coreshell nanoparticles as nutraceutical carriers. Biomaterals 26:6041-6053. crossref(new window)

5.
Cheng, J. C., J. G. Fang, W. F. Chen., B. Zhou., L. Yang, and Z. L. Liu. 2006. Structure-activity relationship studies of resveratrol and its analogues by the reaction kinetics of low density lipoprotein peroxidation. Bioorg. Chem. 34:142-157. crossref(new window)

6.
Cockburn, A., R. Bradford, N. Buck, A. Constable, G. Edwards, B. Haber, P. Hepburn, J. Howlett, F. Kampers, C. Klein, M. Radomski, H. Stamm, S. Wijnhoven, and T. Wildemann. 2012. Approaches to the safety assessment of engineered nanomaterials (ENM) in food. Food Chem. Toxicol. 50:2224- 2242. crossref(new window)

7.
de la Lastra, C. A. and I. Villegas. 2005. Resveratrol as an antiinflammatory and anti-aging agent: mechanisms and clinical implications. Mol. Nutr. Food Res. 49:405-430. crossref(new window)

8.
de la Lastra, C. A. and I. Villegas. 2007. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem. Soc. Trans. 35:1156-1160. crossref(new window)

9.
Dinkova-Kostova, A. T., W. D. Holtzclaw, R. N. Cole, K. Itoh, N. Wakabayashi, Y. Katoh, M. Yammamoto, and P. Talalay. 2002. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzyems that protect against carcinogens and oxidants. Proc. Natl. Acad. Sci. USA 99:11908-11913. crossref(new window)

10.
Gracia-Julia, A., M. Rene, M. Cortes-Munoz, L. Picart, T. Lopez- Pedemonte, and D. Chevalier. 2008. Effect of dynamic high pressure on whey protein aggregation: A comparison with the effect of continuous short-time thermal treatments. Food Hydrocoll. 22:1014-1032. crossref(new window)

11.
Guha, P., A. Dey, M. V. Dhyani, R. Sen, M. Chatterjee, S. Chattopadhyay, and S. K. Bandyopadhyay. 2010. Calpain and caspase orchestrated death signal to accomplish apoptosis induced by resveratrol and its novel analog hydroxstilbene-1 in cancer cells. J. Pharmacol. Exp. Ther. 334:381-394. crossref(new window)

12.
Ha, H. K., J. W. Kim, M. R. Lee, W. Jun, and W. J. Lee. 2015. Cellular uptake and cytotoxicity of ${\beta}$-lactoglobulin nanoparticles: The effects of particle size and surface charge. Asian Australas. J. Anim. Sci. 28:420-427. crossref(new window)

13.
Hanakova, A., K. Bogdanova, K. Tomankova, S. Binder, R. Bajgar, K. Langova, M. Kolar, J. Mosinger, and H. Kolarova. 2014. Study of photodynamic effects on NIH 3T3 cell line and bacteria. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech Repub. 158:201-207.

14.
Herraiz, T. and J. Galisteo. 2004. Endogenous and dietary indoles: a class of antioxidants and radical scavengers in the ABTS assay. Free Radic. Res. 38:323-331. crossref(new window)

15.
Hidalgo, I. J., T. J. Raub, and R. T. Borchardt. 1989. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736-749.

16.
Hu, B., Y. Ting, X. Zeng, and Q. Huang. 2012. Cellular uptake and cytotoxicity of chitosan-caseinophosphopeptides nanocomplexes loaded with epigallocatechin gallate. Carbohydr. Polym. 89:362-370. crossref(new window)

17.
Ignatowicz, E. and W. Baer-Dubowska. 2001. Resveratrol, a natural chemopreventive agent against degenerative diseases. Pol. J. Pharmacol. 53:557-569.

18.
Itoh, K., N. Wakabayashi, Y. Katoh, T. Ishii, K. Igarashi, J. D. Engel, and M. Yamamoto. 1999. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13: 76-86. crossref(new window)

19.
Itoh, K., T. Chiba, S. Takahashi, T. Ishii, K. Igarashi, Y. Katoh, T. Oyake, N. Hayashi, K. Satho, I. Hatayama, M. Yamamoto, and Y. Nabeshima. 1997. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236:313-322. crossref(new window)

20.
Jaramillo, M. C. and D. D. Zhang. 2015. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 27:2179- 2191.

21.
Kansanen, E., H. K. Jyrkkanen, and A. L. Levonen. 2012. Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids. Free Radic. Biol. Med. 52:973- 982. crossref(new window)

22.
Kao, C. L., L. K. Chen, Y. L. Chang, M. C. Yung, C. C. Hsu, Y. C. Chen, W. L. Lo, S. J. Chen, H. H. Ku, and S. J. Hwang. 2010. Resveratrol protects human endothelium from H(2)O(2)- induced oxidative stress and senescence via SirT1 activation. J. Atheroscler. Thromb. 17:970-979. crossref(new window)

23.
Kim, Y. S., J. W. Sull, and H. J. Sung. 2012. Suppressing effect of resveratrol on the migration and invasion of human metastatic lung and cervical cancer cells. Mol. Biol. Rep. 39:8709-8716. crossref(new window)

24.
Livney, Y. D. 2010. Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci. 15:73-83. crossref(new window)

25.
Mates, J. M., C. Perez-Gomez, and I. N. Castro. 1999. Antioxidant enzymes and human diseases. Clin. Biochem. 32:595-603. crossref(new window)

26.
Mikula-Pietrasik, J., A. Kuczmarska, M. Kucinska, M. Murias, M. Wierzchowski, M. Winckiewicz, R. Staniszewski, A. Breborowicz, and K. Ksiazek. 2012. Resveratrol and its synthetic derivatives exert opposite effects on mesothelial celldependent angiogenesis via modulating secretion of VEGF and IL-8/CXCL8. Angiogenesis 15:361-376. crossref(new window)

27.
Nakazato, T., K. Ito, Y. Ikeda, and M. Kizaki. 2005. Green tea component, catechin, induces apoptosis of human malignant B cells via production of reactive oxygen species. Clin. Cancer Res. 11:6040-6049. crossref(new window)

28.
Napierska, D., L. C. J. Thomassen, V. Rabolli, D. Lison, L. Gonzalez, M. Kirsch-Volders, J. A. Martens, and P. H. Hoet. 2009. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 5:846-853. crossref(new window)

29.
Ou, B., M. Hampsch-Woodill, and R. L. Prior. 2001. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 49:4619-4626. crossref(new window)

30.
Powell, J. J., N. Faria, E. Thomas-McKay, and L. C. Pele. 2010. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J. Autoimmun. 34:J226-J233. crossref(new window)

31.
Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26:1231-1237. crossref(new window)

32.
Renaud, S. and M. de Lorgeril. 1992. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523-1526. crossref(new window)

33.
SAS Institute Inc. 2003. SAS User's Guide: version 9.1 Cary, NC, USA.

34.
Schieber, M. and N. S. Chandel. 2014. ROS function in redox signaling and oxidative stress. Curr. Biol. 24:R453-R462. crossref(new window)

35.
Seeram, N. P., V. V. Kulkarni, and S. Padhye 2006. Sources and chemistry of resveratrol. Resveratrol health and disease. CRC Press, Boca Raton, FL, USA. 17-32.

36.
Shankar, S., I. Siddiqui, and R. K. Srivastava. 2007. Molecular mechanisms of resveratrol (3,4,5-trihydroxy-trans-stilbene) and its interaction with TNF-related apoptosis inducing ligand (TRAIL) in androgen-insensitive prostate cancer cells. Mol. Cell. Biochem. 304:273-285. crossref(new window)

37.
Soleas, G. J., E. P. Diamandis, and D. M. Goldberg. 1997. Wine as a biological fluid: history, production, and role in disease prevention. J. Clin. Lab. Anal. 11:287-331. crossref(new window)

38.
Sporn, M. B. and K. T. liby. 2012. NRF2 and cancer: the good, the bad and the importance of context. Nat. Rev. Cancer 12:564- 571. crossref(new window)

39.
Taguchi, K., H. Motohashi, and M. Yamamoto. 2011. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 16:123-140. crossref(new window)

40.
Tinhofer, I., D. Bernhard, M. Senfter, G. Anether, M. Loeffler, G. Kroemer, R. Kofler, A. Csordas, and R. Greil. 2001. Resveratrol, a tumor-suppressive compound from grapes, induces apoptosis via a novel mitochondrial pathway controlled by Bcl-2. FASEB J. 15:1613-1615.

41.
Win, K. Y. and S. S. Feng. 2005. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26:2713- 2722. crossref(new window)

42.
Yaseen, A. A. 2011. The Natural Polyphenol Resveratrol Potentiates the Lethality of HDAC Inhibitors in Acutr Myelogenous Leukemia Cells through Multiple Mechanisms. Master's Thesis, Virginia Commonwealth University, Richmond, VA, USA.

43.
Yin, H., H. P. Too, and G. M. Chow. 2005. The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 26:5818-5826. crossref(new window)

44.
Zhang, J., X. G. Chen, W. B. Peng, and C. S. Liu. 2008. Uptake of oleoyl-chitosan nanoparticles by A549 cells. Nanomedicine 4:208-214. crossref(new window)

45.
Zheng, Y., Y. Liu, J. Ge, X. Wang, L. Liu, Z. Bu, and P. Liu. 2010. Resveratrol protects human lens epithelial cells against H2O2- induced oxidative stress by increasing catalase, SOD-1, and HO-1 expression. Mol. Vis. 16:1467-1474.