Advanced SearchSearch Tips
The Expression of Adipogenic Genes in Adipose Tissues of Feedlot Steers Fed Supplementary Palm Oil or Soybean Oil
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Expression of Adipogenic Genes in Adipose Tissues of Feedlot Steers Fed Supplementary Palm Oil or Soybean Oil
Choi, Seong Ho; Park, Sung Kwon; Choi, Chang Weon; Li, Xiang Zi; Kim, Kyoung Hoon; Kim, Won Young; Jeong, Joon; Johnson, Bradley J.; Zan, Linsen; Smith, Stephen B.;
  PDF(new window)
We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression and stearoyl-CoA desaturase (SCD) gene expression in subcutaneous (s.c.) and intramuscular (i.m.) adipose tissues of feedlot steers. Eighteen Angus and Angus crossbred steers were assigned to three groups of 6 steers and fed a basal diet (control), with 3% palm oil, or with 3% soybean oil, for 70 d, top-dressed daily. Tailhead s.c. adipose tissue was obtained by biopsy at 14 d before the initiation of dietary treatments and at 35 d of dietary treatments. At slaughter, after 70 d of dietary treatment, tailhead s.c. adipose tissue and i.m. adipose tissue were obtained from the longissimus thoracis muscle. Palm oil increased plasma palmitic acid and soybean oil increased plasma linoleic acid and -linolenic acid relative to the initial sampling time. Expression of AMP-activated protein kinase alpha () and peroxisome proliferator-activated receptor gamma () increased between the initial and intermediate biopsies and declined thereafter (p<0.03). SCD gene expression did not change between the initial and intermediate biopsies but declined by over 75% by the final period (p = 0.04), and G-coupled protein receptor 43 (GPR43) gene expression was unaffected by diet or time on trial. Soybean oil decreased (p = 0.01) gene expression at the intermediate sample time. At the terminal sample time, and SCD gene expression was less in i.m. adipose tissue than in s.c. adipose tissue (p<0.05). gene expression was less in s.c. adipose tissue of palm oil-fed steers than in control steers (p = 0.04) and CCAAT enhancer binding protein-beta () gene expression was less in s.c. and i.m. adipose tissues of palm oil-fed steers than in soybean oil-fed steers (p<0.03). Soybean oil decreased SCD gene expression in s.c. adipose tissue (p = 0.05); SCD gene expression in palm oil-fed steers was intermediate between control and soybean oil-fed steers. Contrary to our original hypothesis, palm oil did not promote adipogenic gene expression in s.c. and i.m. adipose tissue.
Adipose Tissue;Fatty Acids;Gene Expression;Palm Oil;Stearoyl-coenzyme A Desaturase;
 Cited by
Adams, T. H., R. L. Walzem, D. R. Smith, S. Tseng, and S. B. Smith. 2010. Hamburger high in total, saturated and trans-fatty acids decreases HDL cholesterol and LDL particle diameter, and increases TAG, in mildly hypercholesterolaemic men. Br. J. Nutr. 103:91-98. crossref(new window)

Archibeque, S. L., D. K. Lunt, C. D. Gilbert, R. K. Tume, and S. B. Smith. 2005. Fatty acid indices of stearoyl-CoA desaturase do not reflect actual stearoyl-CoA desaturase enzyme activities in adipose tissues of beef steers finished with corn-, flaxseed-, or sorghum-based diets. J. Anim. Sci. 83:1153-1166.

Brown, A. J., S. M. Goldsworthy, A. A. Barnes, M. M. Eilert, L. Tcheang, D. Daniels, A. I. Muir, M. J. Wigglesworth, I. Kinghorn, N. J. Fraser, N. B. Pike, J. C. Strum, K. M. Steplewski, P. R. Murdock, J. C. Holder, F. H. Marshall, P. G. Szekeres, S. Wilson, D. M. Ignar, S. M. Foord, A. Wise, and S. J. Dowell. 2003. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278:11312-11319. crossref(new window)

Cao, Z., R. M. Umek, and S. L. McKnight. 1991. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev. 5:1538-1552. crossref(new window)

Choi, S. H., G. O. Gang, J. E. Sawyer, B. J. Johnson, K. H. Kim, C. W. Choi, and S. B. Smith. 2013. Fatty acid biosynthesis and lipogenic enzyme activities in subcutaneous adipose tissue of feedlot steers fed supplementary palm oil or soybean oil. J. Anim. Sci. 91:2091-2098. crossref(new window)

Choi, S. H., S. K. Park, B. J. Johnson, K. Y. Chung, C. W. Choi, K. H. Kim, W. Y. Kim, and B. Smith. 2015. AMPK${\alpha}$, C/EBP${\beta}$, CPT1${\beta}$, GPR43, PPAR, and SCD gene expression in singleand co-cultured bovine satellite cells and intramuscular preadipocytes treated with palmitic, stearic, oleic, and linoleic acid. Asian Australas. J. Anim. Sci. 28:411-419. crossref(new window)

Chung, K. Y., D. K. Lunt, H. Kawachi, H. Yano, and S. B. Smith. 2007. Lipogenesis and stearoyl-CoA desaturase gene expression and enzyme activity in adipose tissue of short-and long-fed Angus and Wagyu steers fed corn-or hay-based diets. J. Anim. Sci. 85:380-387. crossref(new window)

Duckett, S. K., S. L. Pratt, and E. Pavan. 2009. Corn oil or corn grain supplementation to steers grazing endophyte-free tall fescue. II. Effects on subcutaneous fatty acid content and lipogenic gene expression. J. Anim. Sci. 87:1120-1128.

Engle, T. E., J. W. Spears, V. Fellner, and J. Odle. 2000. Effects of soybean oil and dietary copper on ruminal and tissue lipid metabolism in finishing steers. J. Anim. Sci. 78:2713-2721.

Ge, H., X. Li, J. Weiszmann, P. Wang, H. Baribault, J. L. Chen, H. Tian, and Y. Li. 2008. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149:4519-4526. crossref(new window)

Gilmore, L. A., R. L. Walzem, S. F. Crouse, D. R. Smith, T. H. Adams, V. Vaidyanathan, X. Cao, and S. B. Smith. 2011. Consumption of high-oleic acid ground beef increases HDLcholesterol concentration but both high-and low-oleic acid ground beef decrease HDL particle diameter in normocholesterolemic men. J. Nutr. 141:1188-1194. crossref(new window)

Gilmore, L. A., S. F. Crouse, A. Carbuhn, J. Klooster, J. A. Calles, T. Meade, and S. B. Smith. 2013. Exercise attenuates the increase in plasma monounsaturated fatty acids and highdensity lipoprotein cholesterol but not high-density lipoprotein 2b cholesterol caused by high-oleic ground beef in women. Nutr. Res. 33:1003-1011. crossref(new window)

Hardie, D. G. 2007. Biochemistry. Balancing cellular energy. Science 315:1671-1672. crossref(new window)

Joseph, S. J., S. L. Pratt, E. Pavan, R. Rekaya, and S. K. Duckett. 2010. Omega-6 fat supplementation alters lipogenic gene expression in bovine subcutaneous adipose tissue. Gene Regul. Syst. Bio. 19:91-101.

Kimura, I., K. Ozawa, D. Inoue, T. Imamura, K. Kimura, T. Maeda, K. Terasawa, D. Kashihara, K. Hirano, T. Tani, T. Takahashi, S. Miyauchi, G. Shioi, H. Inoue, and G. Tsujimoto. 2013. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 4:1829. crossref(new window)

Ludden, P. A., O. Kucuk, D. C. Rule, and B. W. Hess. 2009. Growth and carcass fatty acid composition of beef steers fed soybean oil for increasing duration before slaughter. Meat Sci. 82:185-192. crossref(new window)

Martin, G. S., D. K. Lunt, K. G. Britain, and S. B. Smith. 1999. Postnatal development of stearoyl coenzyme A desaturase gene expression and adiposity in bovine subcutaneous adipose tissue. J. Anim. Sci. 77:630-636.

NRC. 2000. Nutrient Requirements of Beef Cattle. 7th rev. ed. National Academy Press, Washington, DC, USA.

Smith, S. B., A. Yang, T. W. Larsen, and R. K. Tume. 1998. Positional analysis of triacylglycerols from bovine adipose tissue lipids varying in degree of unsaturation. Lipids 33:197-207. crossref(new window)

Smith, S. B., G. W. Go, B. J. Johnson, K. Y. Chung, S. H. Choi, J. E. Sawyer, D. T. Silvey, L. A. Gilmore, G. Ghahramany, and K. H. Kim. 2012. Adipogenic gene expression and fatty acid composition in subcutaneous adipose tissue depots of Angus steers between 9 and 16 months of age. J. Anim. Sci. 90:2505-2514. crossref(new window)

Smith, S. B., H. Kawachi, C. B. Choi, C. W. Choi, G. Wu, and J. E. Sawyer. 2009. Cellular regulation of bovine intramuscular adipose tissue development and composition. J. Anim. Sci. 87(14 Suppl):E72-82. crossref(new window)

Song, M. K., G. L. Jin, B. J. Ji, S. S. Chang, J. Jeong, S. B. Smith, and S. H. Choi. 2010. Conjugated linoleic acids content in M.longissimus dorsi of Hanwoo steers fed a concentrate supplemented with soybean oil, sodium bicarbonate-based monensin, fish oil. Meat Sci. 85:210-214. crossref(new window)

St. John, L. C., D. K. Lunt, and S. B. Smith. 1991. Fatty acid elongation and desaturation enzyme activities of bovine liver and subcutaneous adipose tissue microsomes. J. Anim. Sci. 69:1064-1073.

Tontonoz, P., E. Hu, R. A. Graves, A. I. Budavari, and B. M. Spiegelman. 1994. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 8:1224-1234. crossref(new window)

Underwood, K. R., J. Tong, M. J. Zhu, Q. W. Shen, W. J. Means, S. P. Ford, S. I. Paisley, B. W. Hess, and M. Du. 2007. Relationship between kinase phosphorylation, muscle fiber typing, and glycogen accumulation in longissimus muscle of beef cattle with high and low intramuscular fat. J. Agric. Food Chem. 55:9698-9703. crossref(new window)

Vasconcelos, J. T. and M. L. Galyean. 2007. Nutritional recommendations of feedlot consulting nutritionists: the 2007 Texas Tech University survey. J. Anim. Sci. 85:2772-2781. crossref(new window)

Wan, Z., J. Root-McCaig, L. Castellani, B. E. Kemp, G. R. Steinberg, and D. C. Wright. 2014. Evidence for the role of AMPK in regulating PGC-1 alpha expression and mitochondrial proteins in mouse epididymal adipose tissue. Obesity (Silver Spring) 22:730-738. crossref(new window)

Westerling, D. B. and H. B. Hedrick. 1979. Fatty acid composition of bovine lipids as influenced by diet, sex and anatomical location and relationship to sensory characteristics. J. Anim. Sci. 48:1343-1348.

Yin, W., J. Mu, and M. J. Birnbaum. 2003. Role of AMP-activated protein kinase in cyclic AMP-dependent lipolysis In 3T3-L1 adipocytes. J. Biol. Chem. 278:43074-43080. crossref(new window)