JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases
Zhao, Xinxia; Ni, Wei; Chen, Chuangfu; Sai, Wujiafu; Qiao, Jun; Sheng, Jingliang; Zhang, Hui; Li, Guozhong; Wang, Dawei; Hu, Shengwei;
  PDF(new window)
 Abstract
Myostatin (MSTN) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Gene knockout of MSTN can result in increasing muscle mass in sheep. The objectives were to investigate whether myostatin gene can be edited in sheep by transcription activator-like effector nucleases (TALENs) in tandem with single-stranded DNA oligonucleotides (ssODNs). We designed a pair of TALENs to target a highly conserved sequence in the coding region of the sheep MSTN gene. The activity of the TALENs was verified by using luciferase single-strand annealing reporter assay in HEK 293T cell line. Co-transfection of TALENs and ssODNs oligonucleotides induced precise gene editing of myostatin gene in sheep primary fibroblasts. MSTN gene-edited cells were successfully used as nuclear donors for generating cloned embryos. TALENs combined with ssDNA oligonucleotides provide a useful approach for precise gene modification in livestock animals.
 Keywords
Transcription Activator-like Effector Nucleases;Myostatin;Targeted Gene Editing;Sheep Primary Fibroblasts;
 Language
English
 Cited by
1.
Use of TALEs and TALEN Technology for Genetic Improvement of Plants, Plant Molecular Biology Reporter, 2016  crossref(new windwow)
 References
1.
Acosta, J., Y. Carpio, Y. Borroto, O. Gonzalez, and M. P. Estrada. 2005. Myostatin gene silenced by RNAi show a zebrafish giant phenotype. J. Biotechnol. 119:324-331. crossref(new window)

2.
Bedell, V. M., Y. Wang, J. M. Campbell, T. L. Poshusta, C. G. Starker, R. G. Krug II, T. Wengfang, S. G. Penheiter, A. C. Ma, and A. Y. H. Leung et al. 2012. In vivo genome editing using a high-efficiency TALEN system. Nature 491:114-118. crossref(new window)

3.
Boch, J., H. Scholze, S. Schornack, A. Landgraf, S. Hahn, S. Kay, T. Lahaye, A. Nickstadt, and U. Bonas. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509-1512. crossref(new window)

4.
Cermak, T., E. L. Doyle, M. Christian, L. Wang, Y. Zhang, C. Schmidt, J. A. Baller, N. V. Somia, A. J. Bogdanove, and D. F. Voytas. 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucl. Acids Res. 39:e82. crossref(new window)

5.
Chen, F., S. M. Pruett-Miller, Y. Huang, M. Gjoka, K. Duda, J. Taunton, T. N. Collingwood, M. Frodin, and G. D. Davis. 2011. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat. Methods 8:753-755. crossref(new window)

6.
Clop, A., F. Marcq, H. Takeda, D. Pirottin, X. Tordoir, B. Bibe, J. Bouix, F. Caiment, J.-M. Elsen, and F. Eychenne et al. 2006. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 38:813-818. crossref(new window)

7.
Davies, B., G. Davies, C. Preece, R. Puliyadi, D. Szumska, and S. Bhattacharya. 2013. Site specific mutation of the Zic2 locus by microinjection of TALEN mRNA in mouse CD1, C3H and C57BL/6J oocytes. PloS one 8:e60216. crossref(new window)

8.
Guschin, D. Y., A. J. Waite, G. E. Katibah, J. C. Miller, M. C. Holmes, and E. J. Rebar. 2010. A rapid and general assay for monitoring endogenous gene modification. Engineered Zinc Finger Proteins (Eds. J. P. Mackay and D. J. Segal). Humana Press, Richmond, CA, USA. 247-256.

9.
Hu, S., C. Chen, J. Sheng, Y. Sun, X. Cao, and J. Qiao. 2010. Enhanced muscle growth by plasmid-mediated delivery of myostatin propeptide. J. Biomed. Biotechnol.Article ID 862591.

10.
Hu, S., W. Ni, W. Sai, H. Zi, J. Qiao, P. Wang, J. Sheng, and C. Chen. 2013. Knockdown of myostatin expression by RNAi enhances muscle growth in transgenic sheep. PloS one 8:e58521. crossref(new window)

11.
Huang, P., A. Xiao, M. Zhou, Z. Zhu, S. Lin, and B. Zhang. 2011. Heritable gene targeting in zebrafish using customized TALENs. Nat. Biotechnol. 29:699-700. crossref(new window)

12.
Jao, L. E., S. R. Wente, and W. Chen. 2013. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl. Acad. Sci. USA. 110:13904-13909. crossref(new window)

13.
Kambadur, R., M. Sharma, T. P. Smith, and J. J. Bass. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 7:910-916.

14.
Li, W., F. Teng, T. Li, and Q. Zhou. 2013. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat. Biotechnol. 31:684-686. crossref(new window)

15.
McPherron, A. C., A. M. Lawler, and S. J. Lee. 1997. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83-90. crossref(new window)

16.
Moscou, M. J. and A. J. Bogdanove. 2009. A simple cipher governs DNA recognition by TAL effectors. Science 326:1501. crossref(new window)

17.
Mosher, D. S., P. Quignon, C. D. Bustamante, N. B. Sutter, C. S. Mellersh, H. G. Parker, and E. A. Ostrander. 2007. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 3:e79. crossref(new window)

18.
Ni, W., J. Qiao, S. Hu, X. Zhao, M. Regouski, M. Yang, I. A. Polejaeva, and C. Chen. 2014. Efficient Gene Knockout in Goats Using CRISPR/Cas9 System. PLoS One 9:e106718. crossref(new window)

19.
Proudfoot, C., D. F. Carlson, R. Huddart, C. R. Long, J. H. Pryor, T. J. King, S. G. Lillico, A. J. Mileham, D. G. McLaren, C. B. Whitelaw, and S. C. Fahrenkrug. 2015. Genome edited sheep and cattle. Transgenic Res. 24:147-153. crossref(new window)

20.
Reyon, D., S. Q. Tsai, C. Khayter, J. A. Foden, and J. D. Sander, and J. K. Joung. 2012. FLASH assembly of TALENs for highthroughput genome editing. Nat. Biotechnol. 30:460-465. crossref(new window)

21.
Schnieke, A., A. J. Kind, W. A. Ritchie, K. Mycock, A. R. Scott, M. Ritchie, I. Wilmut, A. Colman, and K. H. Campbell. 1997. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278:2130-2133. crossref(new window)

22.
Wang, Z., J. Li, H. Huang, G. Wang, M. Jiang, S. Yin, C. Sun, H. Zhang, F. Zhuang, and J. J. Xi. 2012. An integrated chip for the high-throughput synthesis of transcription activator-like effectors. Angew. Chem. 124:8633-8636. crossref(new window)