JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Imputation Accuracy from Low to Moderate Density Single Nucleotide Polymorphism Chips in a Thai Multibreed Dairy Cattle Population
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Imputation Accuracy from Low to Moderate Density Single Nucleotide Polymorphism Chips in a Thai Multibreed Dairy Cattle Population
Jattawa, Danai; Elzo, Mauricio A.; Koonawootrittriron, Skorn; Suwanasopee, Thanathip;
  PDF(new window)
 Abstract
The objective of this study was to investigate the accuracy of imputation from low density (LDC) to moderate density SNP chips (MDC) in a Thai Holstein-Other multibreed dairy cattle population. Dairy cattle with complete pedigree information (n
 Keywords
Imputation Accuracy;Linkage Disequilibrium;Multibreed Dairy Cattle;
 Language
English
 Cited by
1.
Growth and reproduction genomic-polygenic and polygenic parameters and prediction trends as Brahman fraction increases in an Angus-Brahman multibreed population, Livestock Science, 2016, 190, 104  crossref(new windwow)
 References
1.
Barrett, J. C., B. Fry, J. Maller, and M. J. Daly. 2005. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263-265. crossref(new window)

2.
Browning, B. L. and S. R. Browning. 2009. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet. 84:210-223. crossref(new window)

3.
de Roos, A. P. W., C. Schrooten, R. F. Veerkamp, and J. A. M. van Arendonk. 2011. Effects of genomic selection on genetic improvement, inbreeding, and merit of young versus proven bulls. J. Dairy Sci. 94:1559-1567. crossref(new window)

4.
DPO. 1997. D.P.O. Sire and Dam Summary 1997. The Dairy Farming Promotion Organization of Thailand, Ministry of Agriculture and Cooperation, Bangkok, Thailand.

5.
Druet, T., C. Schrooten, and A. P. W. de Roos. 2010. Imputation of genotypes from different single nucleotide polymorphism panels in dairy cattle. J. Dairy Sci. 93:5443-5454. crossref(new window)

6.
Fu, W., J. C. M. Dekkers, W. R. Lee, and B. Abasht. 2015. Linkage disequilibrium in crossbred and pure line chickens. Gent. Sel. Evol. 47:11. crossref(new window)

7.
Hayes, B. J., P. J. Bowman, H. D. Daetwyler, J. W. Kijas, and J. H. J. van der Werf. 2012. Accuracy of genotype imputation in sheep breeds. Anim. Genet. 43:72-80.

8.
He, S., S. Wang, W. Fu, X. Ding, and Q. Zhang. 2015. Imputation of missing genotypes from low- to high-density SNP panel in different population designs. Anim. Genet. 46:1-17. crossref(new window)

9.
Hickey, J. M., J. Crossa, R. Babu, and G. de los Campos. 2012. Factors affecting the accuracy of genotype imputation in populations from several maize breeding programs. Crop Sci. 52:654-663. crossref(new window)

10.
Johnston, J., G. Kistemaker, and P. G. Sullivan. 2011. Comparison of different imputation methods. In: Proceeding of the 2011 Interbull Meeting. Stavanger, Norway. pp. 25-33.

11.
Khatkar, M. S., G. Moser, B. J. Hayes, and H. W. Raadsma. 2012. Strategies and utility of imputed SNP genotypes for genomic analysis in dairy cattle. BMC Genomics 13:538. crossref(new window)

12.
Kong, A., G. Masson, M. L. Frigge, A. Gylfason, P. Zusmanovich, G. Thorleifsson, P. I. Olason, A. Ingason, S. Steinberg, T. Rafnar, P. Sulem, M. Mouy, F. Jonsson, U. Thorsteinsdottir, D. F. Gudbjartsson, H. Stefansson, and K. Stefansson. 2008. Detection of sharing by descent, long-range phasing and haplotype imputation. Nat. Genet. 40:1068-1075. crossref(new window)

13.
Koonawootrittriron, S., M. A. Elzo, and T. Thongprapi. 2009. Genetic trends in a Holstein ${\times}$ other breeds multibreed dairy population in Central Thailand. Livest. Sci. 122:186-192. crossref(new window)

14.
Koonawootrittriron, S., M. A. Elzo, T. Suwanasopee, C. Chaimongkol, W. Chunpet, and T. Tongprapi. 2015. D.P.O. Sire & Dam Summary 2015. Dairy Farming Promotion Organization, Ministry of Agriculture and Cooperatives of Thailand, Bangkok, Thailand.

15.
Koonawootrittriron, S., T. Suwanasopee, and M. A. Elzo. 2012. Development of a Dairy Genetic Genomic Evaluation System in Thailand. National Science and Technology Development Agency, Bangkok, Thailand.

16.
Larmer, S. G., M. Sargolzaei, and F. S. Schenkel. 2014. Extent of linkage disequilibrium, consistency of gametic phase, and imputation accuracy within and across Canadian dairy breeds. J. Dairy Sci. 97:3128-3141. crossref(new window)

17.
Ma, P., R. F. Brondum, Q. Zhang, M. S. Lund, and G. Su. 2013. Comparison of different methods for imputing genome-wide marker genotypes in Swedish and Finnish Red Cattle. J. Dairy Sci. 96:4666-4677. crossref(new window)

18.
Mulder, H. A., M. P. L. Calus, T. Druet, and C. Schrooten. 2012. Imputation of genotypes with low-density chips and its effect on reliability of direct genomic values in Dutch Holstein cattle. J. Dairy Sci. 95:876-889. crossref(new window)

19.
Piccoli, M. L., J. Braccini, F. F. Cardoso, M. Sargolzaei, S. G. Larmer, and F. S. Schenkel. 2014. Accuracy of genome-wide imputation in Braford and Hereford beef cattle. BMC Genetics 15:157. crossref(new window)

20.
Pimentel, E. C. G., M. Wensch-Dorendorf, S. Konig, and H. H. Swalve. 2013. Enlarging a training set for genomic selection by imputation of un-genotyped animals in populations of varying genetic architecture. Genet. Sel. Evol. 45:12. crossref(new window)

21.
Pryce, J. E., J. Johnston, B. J. Hayes, G. Sahana, K. A. Weigel, S. McParland, D. Spurlock, N. Krattenmacher, R. J. Spelman, E. Wall, and M. P. L. Calus. 2014. Imputation of genotypes from low density (50,000 markers) to high density (700,000 markers) of cows from research herds in Europe, North America, and Australasia using 2 reference populations. J. Dairy Sci. 97: 1799-1811. crossref(new window)

22.
Ritsawai, P., S. Koonawootrittriron, D. Jattawa, T. Suwanasopee, and M. A. Elzo. 2014. Fraction of cattle breeds and their influence on milk production of Thai dairy cattle. In: Proceeding of 52rd Kasetsart conference, Kasetsart University, Bangkok, Thailand.

23.
Sargolzaei, M., J. P. Chesnais, and F. S. Schenkel. 2014. A new approach for efficient genotype imputation using information from relatives. BMC Genomics 15:478. crossref(new window)

24.
Sun, C., X. -L. Wu, K. A. Weigel, G. J. M. Sosa, S. Bauck, B. W. Woodward, R. D. Schnabel, J. F. Taylor, and D. Gianola. 2012. An ensemble-based approach to imputation of moderate-density genotypes for genomic selection with application to Angus cattle. Genet. Res. Camb. 94:133-150. crossref(new window)

25.
VanRaden, P. M. and C. Sun. 2014. Fast imputation using mediumor low-coverage sequence data. In: Proceeding of 10th World Congress of Genetics Applied to Livestock Production, Vancouver, Canada.

26.
VanRaden, P. M., J. R. O'Connell, G. R. Wiggans, K. A. Weigel. 2011. Genomic evaluations with many more genotypes. Genet. Sel. Evol. 43:10. crossref(new window)

27.
VanRaden, P. M., C. P. Van Tassell, G. R. Wiggans, T. S. Sonstegard, R. D. Schnabel, J. F. Taylor, and F. S. Schenkel. 2009. Invited review: Reliability of genomic predictions for North American Holstein bulls. J. Dairy Sci. 92:16-24. crossref(new window)

28.
Ventura, R. V., D. Lu, F. S. Schenkel, Z. Wang, C. Li, and S. P. Miller. 2014. Impact of reference population on accuracy of imputation from 6K to 50K single nucleotide polymorphism chips in purebred and crossbred beef cattle. J. Anim. Sci. 92: 1433-1444. crossref(new window)

29.
Weng, Z., Z. Zhang, Q. Zhang, W. Fu, S. He, and X. Ding. 2013. Comparison of different imputation methods from low- to highdensity panels using Chinese Holstein cattle. Animal 7: 729-735. crossref(new window)

30.
Zhang, Z. and T. Druet. 2010. Marker imputation with low-density marker panels in Dutch Holstein cattle. J. Dairy Sci. 93:5487-5494. crossref(new window)