Advanced SearchSearch Tips
Growth Performance, Relative Meat and Organ Weights, Cecal Microflora, and Blood Characteristics in Broiler Chickens Fed Diets Containing Different Nutrient Density with or without Essential Oils
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Growth Performance, Relative Meat and Organ Weights, Cecal Microflora, and Blood Characteristics in Broiler Chickens Fed Diets Containing Different Nutrient Density with or without Essential Oils
Kim, Sang-Jin; Lee, Kyung-Woo; Kang, Chang-Won; An, Byoung-Ki;
  PDF(new window)
The present study was conducted to investigate whether dietary essential oils could affect growth performance, relative organ weights, cecal microflora, immune responses and blood profiles of broiler chickens fed on diets containing different nutrient densities. A total of eight hundred-forty 1-d-old male broiler chicks were randomly allotted into twenty-eight pens (7 pens per treatment, 30 chicks per pen). There were four experimental diets containing two different nutrient densities and supplemented with or without essential oils. Experimental period lasted for 35 days. No clear interaction between nutrient density and essential oils on any of growth performance-related parameters was observed. Live body weights were affected (p<0.05) by nutrient density at 21 days and by dietary essential oils at 35 days. Essential oils significantly (p<0.05) increased daily body weight gain and feed conversion ratio during the periods of 22 to 35 and 1 to 35 days, but failed to affect feed intake during the entire experimental period. Daily weight gain at 1 to 21 days and feed intake at 1 to 21 and 1 to 35 days were significantly impaired (p<0.05) by nutrient density. There were significant treatment interactions (p<0.05) on relative weights of bursa of Fabricius and abdominal fat contents. Finally, either essential oil or nutrient density did not influence the relative percentages of breast and leg meats, the population of cecal microflora, blood parameters and antibody titers against Newcastle disease and infectious bronchitis in broiler chickens. It was concluded that dietary essential oils, independent to nutrient density, failed to stimulate feed intake, but increased growth performance in broiler chickens.
Growth Performance;Nutrient Density;Essential Oils;Broiler Chickens;
 Cited by
The effect of phytogenic feed additives to substitute in-feed antibiotics on growth traits and blood biochemical parameters in broiler chicks challenged with Salmonella typhimurium, Environmental Science and Pollution Research, 2016, 23, 23, 24151  crossref(new windwow)
Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review, Animal Health Research Reviews, 2017, 18, 01, 26  crossref(new windwow)
Growth Patterns of Two Chinese Native Goose Breeds, Revista Brasileira de Ciência Avícola, 2017, 19, 2, 203  crossref(new windwow)
Effects of Nutrient Density and exogenous enzymesin Starter Diet on Performance, Intestinal Microflora, Gut Morphology and Immune Response of Broiler Chickens, Revista Brasileira de Ciência Avícola, 2017, 19, 3, 509  crossref(new windwow)
The physiological response of broiler chickens to the dietary supplementation of the bacteriocin nisin and ionophore coccidiostats, Poultry Science, 2017, 96, 11, 4026  crossref(new windwow)
challenge, Journal of Applied Animal Research, 2018, 46, 1, 691  crossref(new windwow)
Bozkurt, M., K. Kucukyilmaz, A. U. Catli, Z. Ozyildiz, M. Cinar, M. Cabuk, and F. Coven. 2012. Influences of an essential oil mixture supplementation to corn versus wheat-based practical diets on growth, organ size, intestinal morphology and immune response of male and female broilers. Ital. J. Anim. Sci. 11:e54. crossref(new window)

Bravo, D., V. Pirgozliev, and S. P. Rose. 2014. A mixture of carvacrol, cinnamaldehyde, and capsicum oleoresin improves energy utilization and growth performance of broiler chickens fed maize-based diet. J. Anim. Sci. 92:1531-1536. crossref(new window)

Brickett, K. E., J. P. Dahiya, H. L. Classen, and S. Gomis. 2007. Influence of dietary nutrient density, feed form, and lighting on growth and meat yield of broiler chickens. Poult. Sci. 86:2172-2181. crossref(new window)

Buchanan, N. P., J. M. Hott, S. E. Cutlip, A. L. Rack, A. Asamer, and J. S. Moritz. 2008. The effects of a natural antibiotic alternative and a natural growth promoter feed additive on broiler performance and carcass quality. J. Appl. Poult. Res. 17:202-210. crossref(new window)

Cho, J. H., H. J. Kim, and I. H. Kim. 2014. Effects of phytogenic feed additive on growth performance, digestibility, blood metabolites, intestinal microbiota, meat color and relative organ weight after oral challenge with Clostridium perfringens in broilers. Livest. Sci. 160:82-88. crossref(new window)

Hernandez, F., J. Madrid, V. Garcia, J. Orengo, and M. D. Megias. 2004. Influence of two plant extracts on broilers performance, digestibility, and digestive organ size. Poult. Sci. 83:169-174. crossref(new window)

Huyghebaert, G., R. Ducatelle, and F. Van Immerseel. 2011. An update on alternatives to antimicrobial growth promoters for broilers. Vet. J. 187:182-188. crossref(new window)

Jamroz, D., A. Wiliczkiewicz, T. Wertelecki, J. Orda, and J. Skorupinska. 2005. Use of active substances of plant origin in chicken diets based on maize and locally grown cereals. Br. Poult. Sci. 46:485-493. crossref(new window)

Khattak, F., A. Ronchi, P. Castelli, and N. Sparks. 2014. Effects of natural blend of essential oil on growth performance, blood biochemistry, cecal morphology, and carcass quality of broiler chickens. Poult. Sci. 93:132-137. crossref(new window)

Lee, K. W., H. Everts, and A. C. Beynen. 2004. Essential oils in broiler nutrition. Int. J. Poult. Sci. 3:738-752. crossref(new window)

Lee, S. H., H. S. Lillehoj, S. I. Jang, K. W. Lee, M. S. Parks, D. Bravo, and E. P. Lillehoj. 2011. Cinnamaldehyde enhances in vitro parameters of immunity and reduces in vivo infection against avian coccidiosis. Br. J. Nutr. 106:862-869. crossref(new window)

Lee, K. W., H. S. Lillehoj, S. I. Jang, and S. H. Lee. 2012. Effects of various field coccidiosis control programs on host innate and adaptive immunity in commercial broiler chickens. Korean J. Poult. Sci. 39:17-25. crossref(new window)

Lee, D. W., J. H. Shin, J. M. Park, J. C. Song, H. J. Shu, U. J. Chang, B. K. An, C. W. Kang, and J. M. Kim. 2010. Growth performance and meat quality of broiler chicks fed germinated and fermented soybeans. Korean J. Food Sci. Anim. Resour. 30:938-945. crossref(new window)

Leeson, S. 2012. Future considerations in poultry nutrition. Poult. Sci. 941:1281-1285.

Li, W. B., Y. L. Guo, J. L. Chen, R. Wang, Y. He, and D. G. Su. 2010. Influence of lighting schedule and nutrient density in broiler chickens: effect on growth performance, carcass traits and meat quality. Asian Australas. J. Anim. Sci. 23:1510-1518. crossref(new window)

Mirshekar, R., B. Dastar, B. Shabanpour, and S. Hassani. 2013. Effect of dietary nutrient density and vitamin premix withdrawal on performance and meat quality of broiler chickens. J. Sci. Food Agric. 93:2979-2985. crossref(new window)

Mountzouris, K. C., V. Paraskevas, P. Tsirtsikos, I. Palamidi, T. Steiner, G. Schatzmayr, and K. Fegeros. 2011. Assessment of a phytogenic feed additive effect on broiler growth performance, nutrient digestibility and caecal microflora composition. Anim. Feed Sci. Technol. 168:223-231. crossref(new window)

Muhl, A. and F. Liebert. 2007. Growth, nutrient utilization and threonine requirement of growing chicken fed threonine limiting diets with commercial blends of phytogenic feed additives. J. Poult. Sci. 44:297-304. crossref(new window)

Noh, H. S, S. L. Ingale, S. H. Lee, K. H. Kim, I. K. Kwon, Y. H. Kim, and B. J. Chae. 2014. Effects of citrus pulp, fish byproduct and Bacillus subtilis fermentation biomass on growth performance, nutrient digestibility, and fecal microflora of weanling pigs. J. Anim. Sci. Technol. 56:10. crossref(new window)

SAS. 2002. SAS User's Guide. Statistics, Version 8, SAS Institute Inc., Cary, NC, USA.

Scheuermann, G. N., A. C. Junior, L. Cyprioano, and A. M. Gabbi. 2009. Phytogenic additive as an alternative to growth promoters in broiler chickens. Cienc. Rural 39:522-527. crossref(new window)

Yan, L., J. P. Wang, H. J. Kim, Q. W. Meng, X. Ao, S. M. Hong, and I. H. Kim. 2010. Influence of essential oil supplementation and diets with different nutrient densities on growth performance, nutrient digestibility, blood characteristics, meat quality and fecal noxious gas content in grower-finisher pigs. Livest. Sci. 128:115-122. crossref(new window)

Zeng, Z. K., X. Xu, Q. Zhang, P. Li, P. Zhao, Q. Li, J. Liu, and X. Piao. 2015a. Effects of essential oil supplementation of a lowenergy diet on performance, intestinal morphology and microflora, immune properties and antioxidant activities in weaned pigs. Anim. Sci. J. 86:279-285. crossref(new window)

Zeng, Z., S. Zhang, H. Wang, and X. Piao. 2015b. Essential oil and aromatic plants as feed additives in non-ruminant nutrition: A review. J. Anim. Sci. Biotechnol. 6:7. crossref(new window)

Zhao, J. P., J. L. Chen, G. P. Zhao, M. Q. Zheng, R. R. Jiang, and J. Wen. 2009. Live performance, carcass composition, and blood metabolite responses to dietary nutrient density in two distinct broiler breeds of male chickens. Poult. Sci. 88:2575-2584. crossref(new window)