Advanced SearchSearch Tips
Effect of Bacillus subtilis Natto on Meat Quality and Skatole Content in TOPIGS Pigs
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Bacillus subtilis Natto on Meat Quality and Skatole Content in TOPIGS Pigs
Sheng, Q.K.; Zhou, K.F.; Hu, H.M.; Zhao, H.B.; Zhang, Y.; Ying, W.;
  PDF(new window)
This study investigated the effect of Bacillus subtilis (B. subtilis) natto on meat quality and skatole in TOPIGS pigs. Sixty TOPIGS pigs were randomly assigned to 3 groups (including 5 pens per group, with 4 pigs in each pen) and fed with basic diet (control group), basic diet plus 0.1% B. subtilis natto (B group), and basic diet plus 0.1% B. subtilis natto plus 0.1% B. coagulans (BB group), respectively. All pigs were sacrificed at 100 kg. Growth performance, meat quality, serum parameters and oxidation status in the three groups were assessed and compared. Most parameters regarding growth performance and meat quality were not significantly different among the three groups. However, compared with the control group, meat , fat and feces skatole and the content of Escherichia coli (E. Coli), Clostridium, -N were significantly reduced in the B and BB groups, while serum total cholesterol, high density lipoprotein, the levels of liver P450, CYP2A6, and CYP2E1, total antioxidant capability (T-AOC) and glutathione peroxidase and Lactobacilli in feces were significantly increased in the B and BB groups. Further, the combined supplementation of B. subtilis natto and B. coagulans showed more significant effects on the parameters above compared with B. subtilis, and Clostridium, and -N. Our results indicate that the supplementation of pig feed with B. subtilis natto significantly improves meat quality and flavor, while its combination with B. coagulans enhanced these effects.
Bacillus subtilis Natto;Bacillus coagulans;Meat Quality;Skatole;TOPIGS Pig;
 Cited by
Bhat, A. R., V. U. Irorere, T. Bartlett, D. Hill, G. Kedia, M. R. Morris, D. Charalampopoulos, and I. Radecka. 2013. Bacillus subtilis natto: A non-toxic source of poly-gamma-glutamic acid that could be used as a cryoprotectant for probiotic bacteria. AMB Express 3:36. crossref(new window)

Chen, Q. M. and L. C. Wang. 1997. Modern pig production. China Agricultural University Press, Beijing, China. 68-69:353-357.

Cui, C., C. J. Shen, G. Jia, and K. N. Wang. 2013. Effect of dietary Bacillus subtilis on proportion of Bacteroidetes and Firmicutes in swine intestine and lipid metabolism. Genet. Mol. Res. 12:1766-1776. crossref(new window)

Doerner, K. C., K. L. Cook, and B. P. Mason. 2009. 3-Methylindole production is regulated in Clostridium scatologenes ATCC 25775. Lett. Appl. Microbiol. 48:125-132. crossref(new window)

Eom, H. J., J. S. Moon, E. Y. Seo, and N. S. Han. 2009. Heterologous expression and secretion of Lactobacillus amylovorus alpha-amylase in Leuconostoc citreum. Biotechnol. Lett. 31:1783-1788. crossref(new window)

Faucitano, L., J. Rivest, J. P. Daigle, J. Levesque, and C. Gariepy. 2004. Distribution of intramuscular fat content and marbling within the longissimus muscle of pigs. Can. J. Anim. Sci. 84:57-61. crossref(new window)

Giang, H. H., T. Q. Viet, B. Ogle, and J. E. Lindberg. 2011. Effects of supplementation of probiotics on the performance, nutrient digestibility and faecal microflora in growing-finishing pigs. Asian Australas. J. Anim. Sci. 24:655-661. crossref(new window)

Hosoi, T., A. Ametani, K. Kiuchi, and S. Kaminogawa. 2000. Improved growth and viability of lactobacilli in the presence of Bacillus subtilis (natto), catalase, or subtilisin. Can. J. Microbiol. 46:892-897. crossref(new window)

Linden, A., D. Desmecht, S. Vandenput, M. L. Van De Weerdt, and P. Lekeux. 1996. Effect of serotonergic blockade on calf pulmonary function after the intravenous administration of 3-methylindole. J. Comp. Pathol. 114:361-371. crossref(new window)

Lomiwes, D., M. M. Farouk, E. Wiklund, and O. A. Young. 2014. Small heat shock proteins and their role in meat tenderness: A review. Meat Sci. 96:26-40. crossref(new window)

Lundell, K. and K. Wikvall. 2008. Species-specific and agedependent bile acid composition: Aspects on CYP8B and CYP4A subfamilies in bile acid biosynthesis. Curr. Drug Metab. 9:323-331. crossref(new window)

Meng, Q. W., L. Yan, X. Ao, T. X. Zhou, J. P. Wang, J. H. Lee, and I. H. Kim. 2010. Influence of probiotics in different energy and nutrient density diets on growth performance, nutrient digestibility, meat quality, and blood characteristics in growing-finishing pigs. J. Anim. Sci. 88:3320-3326. crossref(new window)

Nagai, T. 2012. Bacteriophages of Bacillus subtilis (natto) and their contamination in natto factories. Bacteriophages (Ed. I. Kurtboke). InTech, Rijeka, Croatia. pp 95-110.

Norlin, M. and K. Wikvall. 2007. Enzymes in the conversion of cholesterol into bile acids. Curr. Mol. Med. 7:199-218. crossref(new window)

Rinkinen, M. L., J. M. Koort, A. C. Ouwehand, E. Westermarck, and K. J. Bjorkroth. 2004. Streptococcus alactolyticus is the dominating culturable lactic acid bacterium species in canine jejunum and feces of four fistulated dogs. FEMS Microbiol. Lett. 230:35-39. crossref(new window)

Rosenvold, K. and H. J. Andersen. 2003. Factors of significance for pork quality-A review. Meat Sci. 64:219-237. crossref(new window)

Sheng, Q. K., Z. J. Yang, H. B. Zhao, X. L. Wang, and J. F. Guo. 2015. Effects of L-tryptophan, fructan, and casein on reducing ammonia, hydrogen sulfide, and skatole in fermented swine manure. Asian Australas. J. Anim. Sci. 28:1202-1208. crossref(new window)

Strathe, A. B., I. H. Velander, T. Mark, and H. N. Kadarmideen. 2013. Genetic parameters for androstenone and skatole as indicators of boar taint and their relationship to production and litter size traits in Danish Landrace. J. Anim. Sci. 91:2587-2595. crossref(new window)

Wajda, S., K. Smiecińska, J. Jankowski, P. Matusevicius, and G. Buteikis. 2010. The efficacy of lactic acid bacteria Pediococcus acidilactici, lactose and formic acid as dietary supplements for turkeys. Pol. J. Vet. Sci. 13:45-51.

Whitehead, T. R., N. P. Price, H. L. Drake, and M. A. Cotta. 2008. Catabolic pathway for the production of skatole and indoleacetic acid by the acetogen Clostridium drakei, Clostridium scatologenes, and swine manure. Appl. Environ. Microbiol. 74:1950-1953. crossref(new window)

Wiercinska, P., Y. Lou, and E. J. Squires. 2012. The roles of different porcine cytochrome P450 enzymes and cytochrome b5A in skatole metabolism. Animal 6:834-845. crossref(new window)

Yang, N. C., C. W. Chou, C. Y. Chen, K. L. Hwang, and Y. C. Yang. 2009. Combined nattokinase with red yeast rice but not nattokinase alone has potent effects on blood lipids in human subjects with hyperlipidemia. Asia. Pac. J. Clin. Nutr. 18:310-317.

Yongjun, C., B. Wei, J. Shujun, W. Meizhi, J. Yan, Y. Yan, Z. Zhongliang, and Z. Goulin. 2011. Directed evolution improves the fibrinolytic activity of nattokinase from Bacillus natto. FEMS Microbiol. Lett. 325:155-161. crossref(new window)

Zahn, J. A., J. L. Hatfield, Y. S. Do, A. A. Dispirito, D. A. Laird, and R. L. Pfeiffer. 1997. Characterization of volatile organic emissions and wastes from swine production facilities. J. Environ. Qual. 26:1687-1696.

Zamaratskaia, G., G. Chen, and K. Lundstrom. 2006. Effects of sex, weight, diet and hCG administration on levels of skatole and indole in the liver and hepatic activities of cytochromes P4502E1 and P4502A6 in pigs. Meat Sci. 72:331-338. crossref(new window)

Zhou, X., Y. Wang, Q. Gu, and W. Li. 2010. Effect of dietary probiotic, Bacillus coagulans, on growth performance, chemical composition, and meat quality of Guangxi Yellow chicken. Poult. Sci. 89:588-593. crossref(new window)