Advanced SearchSearch Tips
Tudor Domain Containing Protein TDRD12 Expresses at the Acrosome of Spermatids in Mouse Testis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Tudor Domain Containing Protein TDRD12 Expresses at the Acrosome of Spermatids in Mouse Testis
Kim, Min; Ki, Byeong Seong; Hong, Kwonho; Park, Se-pill; Ko, Jung-Jae; Choi, Youngsok;
  PDF(new window)
Tdrd12 is one of tudor domain containing (Tdrd) family members. However, the expression pattern of Tdrd12 has not been well studied. To compare the expression levels of Tdrd12 in various tissues, real time-polymerase chain reaction was performed using total RNAs from liver, small intestine, heart, brain, kidney, lung, spleen, stomach, uterus, ovary, and testis. Tdrd12 mRNA was highly expressed in testis. Antibody against mouse TDRD12 were generated using amino acid residues SQRPNEKPLRLTEKKDC of TDRD12 to investigate TDRD12 localization in testis. Immunostaining assay shows that TDRD12 is mainly localized at the spermatid in the seminiferous tubules of adult testes. During postnatal development, TDRD12 is differentially expressed. TDRD12 was detected in early spermatocytes at 2 weeks and TDRD12 was localized at acrosome of the round spermatids. TDRD12 expression was not co-localized with TDRD1 which is an important component of piRNA pathway in germ cells. Our results indicate that TDRD12 may play an important role in spermatids and function as a regulator of spermatogenesis in dependent of TDRD1.
 Cited by
Tdrd12 Is Essential for Germ Cell Development and Maintenance in Zebrafish, International Journal of Molecular Sciences, 2017, 18, 6, 1127  crossref(new windwow)
Biased Duplications and Loss of Members in Tdrd Family in Teleost Fish, Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328, 8, 727  crossref(new windwow)
Aravin, A. A., G. W. van der Heijden, J. Castaneda, V. V. Vagin, G. J. Hannon, and A. Bortvin. 2009. Cytoplasmic compartmentalization of the fetal piRNA pathway in mice. PLoS Genet. 5:e1000764. crossref(new window)

Bak, C. W., T. K. Yoon, and Y. Choi. 2011. Functions of PIWI proteins in spermatogenesis. Clin. Exp. Reprod. Med. 38:61-67. crossref(new window)

Bao, J., L. Wang, J. Lei, Y. Hu, Y. Liu, H. Shen, W. Yan, and C. Xu. 2012. STK31(TDRD8) is dynamically regulated throughout mouse spermatogenesis and interacts with MIWI protein. Histochem. Cell Biol. 137:377-389. crossref(new window)

Bortvin, A. 2013. PIWI-interacting RNAs (piRNAs) - a mouse testis perspective. Biochemistry (Mosc) 78:592-602. crossref(new window)

Callebaut, I. and J. P. Mornon. 1997. The human EBNA-2 coactivator p100: multidomain organization and relationship to the staphylococcal nuclease fold and to the tudor protein involved in Drosophila melanogaster development. Biochem. J. 321:125-132. crossref(new window)

Caudy, A. A., R. F. Ketting, S. M. Hammond, A. M. Denli, A. M. Bathoorn, B. B. Tops, J. M. Silva, M. M. Myers, G. J. Hannon, and R. H. Plasterk. 2003. A micrococcal nuclease homologue in RNAi effector complexes. Nature 425:411-414. crossref(new window)

Chen, C., J. Jin, D. A. James, M. A. Adams-Cioaba, J. G. Park, Y. Guo, E. Tenaglia, C. Xu, G. Gish, J. Min, and T. Pawson. 2009. Mouse Piwi interactome identifies binding mechanism of Tdrkh Tudor domain to arginine methylated Miwi. Proc. Natl. Acad. Sci. USA 106:20336-20341. crossref(new window)

Chuma, S., M. Hiyoshi, A. Yamamoto, M. Hosokawa, K. Takamune, and N. Nakatsuji. 2003. Mouse Tudor Repeat-1 (MTR-1) is a novel component of chromatoid bodies/nuages in male germ cells and forms a complex with snRNPs. Mech. Dev. 120:979-990. crossref(new window)

Chuma, S., M. Hosokawa, K. Kitamura, S. Kasai, M. Fujioka, M. Hiyoshi, K. Takamune, T. Noce, and N. Nakatsuji. 2006. Tdrd1/Mtr-1, a tudor-related gene, is essential for male germ-cell differentiation and nuage/germinal granule formation in mice. Proc. Natl. Acad. Sci. USA 103:15894-15899. crossref(new window)

Gao, X., X. Zhao, Y. Zhu, J. He, J. Shao, C. Su, Y. Zhang, W. Zhang, J. Saarikettu, O. Silvennoinen, Z. Yao, and J. Yang. 2012. Tudor staphylococcal nuclease (Tudor-SN) participates in small ribonucleoprotein (snRNP) assembly via interacting with symmetrically dimethylated Sm proteins. J. Biol. Chem. 287:18130-18141. crossref(new window)

Garcia-Lopez, J., D. Hourcade Jde, and J. Del Mazo. 2013. Reprogramming of microRNAs by adenosine-to-inosine editing and the selective elimination of edited microRNA precursors in mouse oocytes and preimplantation embryos. Nucl. Acids Res. 41:5483-5493. crossref(new window)

Handler, D., D. Olivieri, M. Novatchkova, F. S. Gruber, K. Meixner, K. Mechtler, A. Stark, R. Sachidanandam, and J. Brennecke. 2011. A systematic analysis of Drosophila TUDOR domain-containing proteins identifies Vreteno and the Tdrd12 family as essential primary piRNA pathway factors. EMBO J. 30:3977-3993. crossref(new window)

Kallajoki, M., I. Virtanen, and J. Suominen. 1986. The fate of acrosomal staining during the acrosome reaction of human spermatozoa as revealed by a monoclonal antibody and PNA-lectin. Int. J. Androl. 9:181-194. crossref(new window)

Kotaja, N. and P. Sassone-Corsi. 2007. The chromatoid body: a germ-cell-specific RNA-processing centre. Nat. Rev. Mol. Cell Biol. 8:85-90.

Lachke, S. A., F. S. Alkuraya, S. C. Kneeland, T. Ohn, A. Aboukhalil, G. R. Howell, I. Saadi, R. Cavallesco, Y. Yue, A. C. Tsai, K. S. Nair, M. I. Cosma, R. S. Smith, E. Hodges, S. M. Alfadhli, A. Al-Hajeri, H. E. Shamseldin, A. Behbehani, G. J. Hannon, M. L. Bulyk, A. V. Drack, P. J. Anderson, S. W. John, and R. L. Maas. 2011. Mutations in the RNA granule component TDRD7 cause cataract and glaucoma. Science 331:1571-1576. crossref(new window)

Leverson, J. D., P. J. Koskinen, F. C. Orrico, E. M. Rainio, K. J. Jalkanen, A. B. Dash, R. N. Eisenman, and S. A. Ness. 1998. Pim-1 kinase and p100 cooperate to enhance c-Myb activity. Mol. Cell 2:417-425. crossref(new window)

Li, C. L., W. Z. Yang, Y. P. Chen, and H. S. Yuan. 2008. Structural and functional insights into human Tudor-SN, a key component linking RNA interference and editing. Nucl. Acids Res. 36:3579-3589. crossref(new window)

Luteijn, M. J. and R. F. Ketting. 2013. PIWI-interacting RNAs: From generation to transgenerational epigenetics. Nat. Rev. Genet. 14:523-534.

Matzuk, M. M. and D. J. Lamb. 2008. The biology of infertility: Research advances and clinical challenges. Nat. Med. 14:1197-1213. crossref(new window)

Meikar, O., M. Da Ros, H. Korhonen, and N. Kotaja. 2011. Chromatoid body and small RNAs in male germ cells. Reproduction 142:195-209. crossref(new window)

Pan, J., M. Goodheart, S. Chuma, N. Nakatsuji, D. C. Page, and P. J. Wang. 2005. RNF17, a component of the mammalian germ cell nuage, is essential for spermiogenesis. Development 132:4029-4039. crossref(new window)

Pandey, R. R., Y. Tokuzawa, Z. Yang, E. Hayashi, T. Ichisaka, S. Kajita, Y. Asano, T. Kunieda, R. Sachidanandam, S. Chuma, S. Yamanaka, and R. S. Pillai. 2013. Tudor domain containing 12 (TDRD12) is essential for secondary PIWI interacting RNA biogenesis in mice. Proc. Natl. Acad. Sci. USA 110:16492-16497. crossref(new window)

Paukku, K., N. Kalkkinen, O. Silvennoinen, K. K. Kontula, and J. Y. Lehtonen. 2008. p100 increases AT1R expression through interaction with AT1R 3'-UTR. Nucl. Acids Res. 36:4474-4487. crossref(new window)

Reuter, M., S. Chuma, T. Tanaka, T. Franz, A. Stark, and R. S. Pillai. 2009. Loss of the Mili-interacting Tudor domaincontaining protein-1 activates transposons and alters the Mili-associated small RNA profile. Nat. Struct. Mol. Biol. 16:639-646. crossref(new window)

Reynolds, N., B. Collier, K. Maratou, V. Bingham, R. M. Speed, M. Taggart, C. A. Semple, N. K. Gray, and H. J. Cooke. 2005. Dazl binds in vivo to specific transcripts and can regulate the pre-meiotic translation of Mvh in germ cells. Hum. Mol. Genet. 14:3899-3909. crossref(new window)

Saxe, J. P., M. Chen, H. Zhao, and H. Lin. 2013. Tdrkh is essential for spermatogenesis and participates in primary piRNA biogenesis in the germline. EMBO J. 32:1869-1885. crossref(new window)

Shoji, M., T. Tanaka, M. Hosokawa, M. Reuter, A. Stark, Y. Kato, G. Kondoh, K. Okawa, T. Chujo, T. Suzuki, K. Hata, S. L. Martin, T. Noce, S. Kuramochi-Miyagawa, T. Nakano, H. Sasaki, R. S. Pillai, N. Nakatsuji, and S. Chuma. 2009. The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. Dev. Cell 17:775-787. crossref(new window)

Smith, J. M., J. Bowles, M. Wilson, R. D. Teasdale, and P. Koopman. 2004. Expression of the tudor-related gene Tdrd5 during development of the male germline in mice. Gene Expr. Patterns 4:701-705. crossref(new window)

Tanaka, T., M. Hosokawa, V. V. Vagin, M. Reuter, E. Hayashi, A. L. Mochizuki, K. Kitamura, H. Yamanaka, G. Kondoh, K. Okawa, S. Kuramochi-Miyagawa, T. Nakano, R. Sachidanandam, G. J. Hannon, R. S. Pillai, N. Nakatsuji, and S. Chuma. 2011. Tudor domain containing 7 (Tdrd7) is essential for dynamic ribonucleoprotein (RNP) remodeling of chromatoid bodies during spermatogenesis. Proc. Natl. Acad. Sci. USA 108:10579-10584. crossref(new window)

van der Heijden, G. W., J. Castaneda, and A. Bortvin. 2010. Bodies of evidence - compartmentalization of the piRNA pathway in mouse fetal prospermatogonia. Curr. Opin. Cell Biol. 22:752-757. crossref(new window)

Vasileva, A., D. Tiedau, A. Firooznia, T. Muller-Reichert, and R. Jessberger. 2009. Tdrd6 is required for spermiogenesis, chromatoid body architecture, and regulation of miRNA expression. Curr. Biol. 19:630-639. crossref(new window)

Wang, P. J., J. R. McCarrey, F. Yang, and D. C. Page. 2001. An abundance of X-linked genes expressed in spermatogonia. Nat. Genet. 27:422-426. crossref(new window)

Yabuta, Y., H. Ohta, T. Abe, K. Kurimoto, S. Chuma, and M. Saitou. 2011. TDRD5 is required for retrotransposon silencing, chromatoid body assembly, and spermiogenesis in mice. J. Cell Biol. 192:781-795. crossref(new window)

Yang, J., S. Aittomaki, M. Pesu, K. Carter, J. Saarinen, N. Kalkkinen, E. Kieff, and O. Silvennoinen. 2002. Identification of p100 as a coactivator for STAT6 that bridges STAT6 with RNA polymerase II. EMBO J. 21:4950-4958. crossref(new window)

Ying, M. and D. Chen. 2012. Tudor domain-containing proteins of Drosophila melanogaster. Dev. Growth Differ. 54:32-43. crossref(new window)