JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Ginsenoside Rg1 Improves In vitro-produced Embryo Quality by Increasing Glucose Uptake in Porcine Blastocysts
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Ginsenoside Rg1 Improves In vitro-produced Embryo Quality by Increasing Glucose Uptake in Porcine Blastocysts
Kim, Seung-Hun; Choi, Kwang-Hwan; Lee, Dong-Kyung; Oh, Jong-Nam; Hwang, Jae Yeon; Park, Chi-Hun; Lee, Chang-Kyu;
  PDF(new window)
 Abstract
Ginsenoside Rg1 is a natural compound with various efficacies and functions. It has beneficial effects on aging, diabetes, and immunity, as well as antioxidant and proliferative functions. However, its effect on porcine embryo development remains unknown. We investigated the effect of ginsenoside Rg1 on the in vitro development of preimplantation porcine embryos after parthenogenetic activation in high-oxygen conditions. Ginsenoside treatment did not affect cleavage or blastocyst formation rates, but did increase the total cell number and reduced the rate of apoptosis. In addition, it had no effect on the expression of four apoptosis-related genes (Bcl-2 homologous antagonist/killer, B-cell lymphoma-extra large, Caspase 3, and tumor protein p53) or two metabolism-related genes (mechanistic target of rapamycin, carnitine palmitoyltransferase 1B), but increased the expression of Glucose transporter 1 (GLUT1), indicating that it may increase glucose uptake. In summary, treatment with the appropriate concentration of ginsenoside Rg1 () can increase glucose uptake, thereby improving the quality of embryos grown in high-oxygen conditions.
 Keywords
Ginsenoside Rg1;In vitro Culture;Metabolism;Embryo;Pig;
 Language
English
 Cited by
 References
1.
Brison, D. R. and H. J. Leese. 1991. Energy metabolism in late preimplantation rat embryos. J. Reprod. Fertil. 93:245-251. crossref(new window)

2.
Chen, X. C., Y. G. Zhu, L. A. Zhu, C. Huang, Y. Chen, L. M. Chen, F. Fang, Y. C. Zhou, and C. H. Zhao. 2003. Ginsenoside Rg1 attenuates dopamine-induced apoptosis in PC12 cells by suppressing oxidative stress. Eur. J. Pharmacol. 473:1-7. crossref(new window)

3.
Conaghan, J., A. H. Handyside, R. M. L. Winston, and H. J. Leese. 1993. Effects of pyruvate and glucose on the development of human preimplantation embryos in vitro. J. Reprod. Fertil. 99:87-95. crossref(new window)

4.
Cory, S. and J. M. Adams. 2002. The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2:647-656. crossref(new window)

5.
Deng, H. L. and J. T. Zhang. 1991. Anti-lipid peroxilative effect of ginsenoside Rb1 and Rg1. Chin. Med. J. 104:395-398.

6.
Elmore, S. 2007. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35:495-516. crossref(new window)

7.
Fridman, J. S. and S. W. Lowe. 2003. Control of apoptosis by p53. Oncogene 22:9030-9040. crossref(new window)

8.
Gentile, L., M. Monti, V. Sebastiano, V. Merico, R. Nicolai, M. Calvani, S. Garagna, C. A. Redi, and M. Zuccotti. 2004. Single-cell quantitative RT-PCR analysis of Cpt1b and Cpt2 gene expression in mouse antral oocytes and in preimplantation embryos. Cytogenet. Genome Res. 105:215-221. crossref(new window)

9.
Goto, Y., Y. Noda, T. Mori, and M. Nakano. 1993. Increased generation of reactive oxygen species in embryos cultured in vitro. Free Radic. Biol. Med. 15:69-75. crossref(new window)

10.
Guerin, P., S. El Mouatassim, and Y. Menezo. 2001. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update 7:175-189. crossref(new window)

11.
Hagen, D. R., R. S. Prather, M. M. Sims, and N. L. First. 1991. Development of one-cell porcine embryos to the blastocyst stage in simple media. J. Anim. Sci. 69:1147-1150. crossref(new window)

12.
Kenarova, B., H. Neychev, C. Hadjiivanova, and V. D. Petkov. 1990. Immunomodulating activity of ginsenoside Rg1 from Panax ginseng. Jpn. J. Pharmacol. 54:447-454. crossref(new window)

13.
Kitagawa, Y., K. Suzuki, A. Yoneda, and T. Watanabe. 2004. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology 62:1186-1197. crossref(new window)

14.
Kumar, P., A. Verma, M. Kumar, S. De, R. Kumar, and T. K. Datta. 2015. Expression pattern of glucose metabolism genes correlate with development rate of buffalo oocytes and embryos in vitro under low oxygen condition. J. Assist. Reprod. Genet. 32:471-478. crossref(new window)

15.
Land, S. C., C. L. Scott, and D. Walker. 2014. mTOR signalling, embryogenesis and the control of lung development. Semin. Cell Dev. Biol. 36:68-78. crossref(new window)

16.
Lane, M. and D. K. Gardner. 1996. Fertilization and early embryology: Selection of viable mouse blastocysts prior to transfer using a metabolic criterion. Hum. Reprod. 11:1975-1978. crossref(new window)

17.
Lee, K., C. Wang, J. M. Chaille, and Z. Machaty. 2010. Effect of resveratrol on the development of porcine embryos produced in vitro. J. Reprod. Dev. 56:330-335. crossref(new window)

18.
Lee, M. S., J. T. Hwang, S. H. Kim, S. Yoon, M. S. Kim, H. J. Yang, and D. Y. Kwon. 2010. Ginsenoside Rc, an active component of Panax ginseng, stimulates glucose uptake in C2C12 myotubes through an AMPK-dependent mechanism. J. Ethnopharmacol. 127:771-776. crossref(new window)

19.
Liu, P., H. Yin, Y. Xu, Z. Zhang, K. Chen, and Y. Li. 2006. Effects of ginsenoside Rg1 on postimplantation rat and mouse embryos cultured in vitro. Toxicol. In Vitro 20:234-238. crossref(new window)

20.
Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408. crossref(new window)

21.
Lu, J. M., Q. Yao, and C. Chen. 2009. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr. Vasc. Pharmacol. 7:293-302. crossref(new window)

22.
Martin, K. L. and H. J. Leese. 1995. Role of glucose in mouse preimplantation embryo development. Mol. Reprod. Dev. 40:436-443. crossref(new window)

23.
Mateusen, B., A. Van Soom, D. G. Maes, I. Donnay, L. Duchateau, and A. S. Lequarre. 2005. Porcine embryo development and fragmentation and their relation to apoptotic markers: a cinematographic and confocal laser scanning microscopic study. Reprod. 129:443-452. crossref(new window)

24.
Menezo, Y. J., J. F. Guerin, and J. C. Czyba. 1990. Improvement of human early embryo development in vitro by coculture on monolayers of Vero cells. Biol. Reprod. 42:301-306. crossref(new window)

25.
Mook-Jung, I., H. S. Hong, J. H. Boo, K. H. Lee, S. H. Yun, M. Y. Cheong, I. Joo, K. Huh, and M. W. Jung. 2001. Ginsenoside Rb1 and Rg1 improve spatial learning and increase hippocampal synaptophysin level in mice. J. Neurosci. Res. 63:509-515. crossref(new window)

26.
Morita, Y., O. Tsutsumi, I. Hosoya, Y. Taketani, Y. Oka, and T. Kato. 1992. Expression and possible function of glucose transporter protein GLUT1 during preimplantation mouse development from oocytes to blastocysts. Biochem. Biophys. Res. Commun. 188:8-15. crossref(new window)

27.
Shang, W., Y. Yang, L. Zhou, B. Jiang, H. Jin, and M. Chen. 2008. Ginsenoside Rb1 stimulates glucose uptake through insulin-like signaling pathway in 3T3-L1 adipocytes. J. Endocrinol. 198:561-569. crossref(new window)

28.
Shi, A. W., X. B. Wang, F. X. Lu, M. M. Zhu, X. Q. Kong, and K. J. Cao. 2009. Ginsenoside Rg1 promotes endothelial progenitor cell migration and proliferation. Acta Pharmacol. Sin. 30:299-306. crossref(new window)

29.
Stennicke, H. R. and G. S. Salvesen. 1998. Properties of the caspases. Biochim. Biophys. Acta 1387:17-31. crossref(new window)

30.
Xie, J. T., S. McHendale, and C. S. Yuan. 2005. Ginseng and diabetes. Am. J. Chin. Med. 33:397-404. crossref(new window)