Advanced SearchSearch Tips
Effect of Glutamine, Glutamic Acid and Nucleotides on the Turnover of Carbon (δ13C) in Organs of Weaned Piglets
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Glutamine, Glutamic Acid and Nucleotides on the Turnover of Carbon (δ13C) in Organs of Weaned Piglets
Amorim, Alessandro Borges; Berto, Dirlei Antonio; Saleh, Mayra Anton Dib; Telles, Filipe Garcia; Denadai, Juliana Celia; Sartori, Maria Marcia Pereira; Luiggi, Fabiana Golin; Santos, Luan Sousa; Ducatti, Carlos;
  PDF(new window)
Morphological and physiological alterations occur in the digestive system of weanling piglets, compromising the performance in subsequent phases. This experiment aimed at verifying the influence of glutamine, glutamate and nucleotides on the carbon turnover in the pancreas and liver of piglets weaned at 21 days of age. Four diets were evaluated: glutamine, glutamic acid or nucleotides-free diet (CD); containing 1% glutamine (GD); containing 1% glutamic acid (GAD) and containing 1% nucleotides (ND). One hundred and twenty-three piglets were utilized with three pigs slaughtered at day zero (weaning day) and three at each one of the experimental days (1, 2, 4, 5, 7, 9, 13, 20, 27, and 49 post-weaning), in order to collect organ samples, which were analyzed for the isotopic composition and compared by means of time. No differences were found (p>0.05) among treatments for the turnover of the in the pancreas ( = 13.91, 14.37, 11.07, and 9.34 days; = 46.22, 47.73, 36.79, and 31.04 days for CD, GD, GAD, and ND, respectively). In the liver, the ND presented accelerated values of carbon turnover ( and ) in relation to the values obtained for the GD ( and ). However, the values obtained for the CD ( and ) and GAD ( and ) had no differences (p>0.05) among other diets. The technique of isotopic dilution demonstrated trophic action of nucleotides in the liver.
Liver;Pancreas;Pigs;Stable Isotopes;
 Cited by
Borges, M. C., M. M. Rogero, and J. Tirapegui. 2008. Enteral and parenteral supplementation with glutamine in preterm and low-birth-weight neonates. Rev. Bras. Cienc. Farm. 44:13-23. crossref(new window)

Burrin, D. G. and B. Stoll. 2009. Metabolic fate and function of dietary glutamate in the gut. Am. J. Clin. Nutr. 90:850S-856S. crossref(new window)

Caldara, F. R., C. Ducatti, D. A. Berto, J. C. Denadai, E. T. Silva, and R. G. Garcia. 2008. Effect of glutamine on carbon (${\delta}^{13}C$) turnover in the muscles and viscera of weaned piglets. Acta Sci. Anim. Sci. 30:291-297.

Carrijo, A. S, A. C. Pezzato, and C. Ducatti. 2000. Nutritional metabolism evaluation of laying hens using stable-carbon isotopes ($^{13}C/^{12}C$). Rev. Bras. Cienc. Avic. 2:209-218.

Carrijo, A. S., A. C. Pezzato, C. Ducatti, J. R. Sartori, L. Trinca, and E. T. Silva. 2006. Traceability of bovine meat and bone meal in poultry by stable isotope analysis. Rev. Bras. Cienc. Avic. 8:37-42.

Carver, J. D. 1994. Dietary nucleotides: Cellular immune, intestinal and hepatic system effects. J. Nutr. 124:144-148.

Carver, J. D. 1999. Dietary nucleotides: Effects on the immune and gastrointestinal systems. Acta Paediatr. Suppl. 430:83-88.

Denadai, J. C, C. Ducatti, A. C. Pezzato, A. S. Carrijo, F. R. Caldara, and R. P. Oliveira. 2006. Studies on carbon-13 turnover in eggs and blood of commercial layers. Rev. Bras. Cienc. Avic. 8:251-256. crossref(new window)

Ducatti, C., A. S. Carrijo, A. C. Pezzato, and P. F. A. Mancera. 2002. Theorical and experimental model for carbon-13 turnover in mammalian and avian tissues. Sci. Agric. (Piracicaba, Braz.) 59:29-33. crossref(new window)

Eggum, B. O. 1995. The influence of dietary fibre on protein digestion and utilization in monogastrics. Arch. Tierernahr. 48:89-95. crossref(new window)

Frigerio, F., M. Casimir, S. Carobbio, and P. Maechler. 2008. Tissue specificity of mitochondrial glutamate pathways and the control of metabolic homeostasis. Biochim. Biophys. Acta 1777:965-972. crossref(new window)

Fox, A. D., S. A. Kripke, J. M. Berman, R. M. McGintey, R. G. Settle, and J. L. Rombeau. 1988. Dexamethasone administration induces increased glutaminase specific activity in the jejunum and colon. J. Surg. Res. 44:391-396. crossref(new window)

Grimble, G. K. 1994. Dietary nucleotides and gut mucosal defence. Gut 35:S46-S51. crossref(new window)

Hobson, K. A. and R. G. Clark. 1992. Assessing avian diets using stable isotopes I: Turnover of $^{13}C$ in tissues. Condor 94:181-188. crossref(new window)

Liu, Y., J. Han, J. Huang, X. Wang, F. Wang, and J. Wang. 2009. Dietary L-arginine supplementation improves intestinal function in weaned pigs after an Escherichia coli lipopolysaccharide challenge. Asian Australas. J. Anim. Sci. 22:1667-1675. crossref(new window)

Meister, A. 1980. Catalytic mechanism of glutamine synthetase: Overview of glutamine metabolism. In: Glutamine: Metabolism, Enzymology, and Regulation (Ed J. Mora). Academic Press, New York, USA. pp. 1-40.

Mori C., E. A. Garcia, C. Ducatti, J. C. Denadai, R. Gottmann, and M. A. O. Mituo. 2008. Poultry offal meal traceability in meat quail tissues using the technique of stable carbon ($^{13}C/^{12}C$) and nitrogen ($^{15}N/^{14}N$) isotopes. Rev. Bras. Cienc. Avic. 10:45-52. crossref(new window)

Ohyanagi, H., S. Nishmatsu, Y. Kanbara, M. Usami, and Y. Saitoh. 1989. Effects of nucleosides and a nucleotide on DNA and RNA syntheses by the salvage and de novo pathway in primary monolayer cultures of hepatocytes and hepatoma cells. J. Parenter. Enteral Nutr. 13:51-58. crossref(new window)

Piasentier, E., R. Valusso, F. Camin, and G. Versini. 2003. Stable isotope ratio analysis for authentication of lamb meat. Meat Sci. 64:239-247. crossref(new window)

Prohaszka, L. and F. Baron. 1980. The predisposing role of high dietary protein supplies in enteropathogenic E. coli infections of weaned pigs. Zentralbl. Veterinarmed. B. 27:222-232.

Rhoads, J. M. and G. Wu. 2009. Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111-122. crossref(new window)

Rodwell, V. W. and P. J. Kennelly. 2003. Proteins: Determination of primary structure. In: Harper's Illustrated Biochemistry 26th edn. (Eds. R. K. Murray, D. K. Granner, P. A. Mayes, and V. W. Rodwell). McGraw-Hill Book Company, New York, NY, USA. pp. 21-29.

Rudolph, F. B. 1994. The biochemistry and physiology of nucleotides. J. Nutr. 124:124S-127S.

Rossi, P., E. G. Xavier, and F. Rutz. 2007. Nucleotides in animal nutrition. Rev. Bras. Agrociencia 13:5-12.

Rostagno, H. S., L. F. T. Albino, J. L. Donzele, P. C. Gomes, R. F. Oliveira, D. C. Lopes, A. S. Ferreira, S. L. T. Barreto, and R. F. Euclides. 2011. Brazilian tables for poultry and swine: composition of feedstuffs and nutritional requirements 3rd edn. UFV, Vicosa, MG, Brazil.

Van Buren, C. T. and F. Rudolph. 1997. Dietary nucleotides: A conditional requirement. Nutrition 13:470-472. crossref(new window)

Van der Meulen, J., S. J. Koopmans, R. A. Dekker, and A. Hoogendoorn. 2010. Increasing weaning age of piglets from 4 to 7 weeks reduces stress, increases post-weaning feed intake but does not improve intestinal functionality. Animal 4:1653-1661. crossref(new window)

Sauer N., M. Eklund, E. Bauer, M. G. Ganzle, C. J. Field, R. T. Zijlstra, and R. Mosenthin. 2012. The effects of pure nucleotides on performance, humoral immunity, gut structure and numbers of intestinal bacteria of newly weaned pigs. J. Anim. Sci. 90:3126-3134. crossref(new window)

Wu, G., S. A. Meier, and D. A. Knabe. 1996. Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J. Nutr. 126:2578-2584.

Wu, G., F. W. Bazer, R. C. Burghardt, G. A. Johnson, S. W. Kim, X. L. Li, M. C. Satterfield, and T. E. Spencer. 2010. Impacts of amino acid nutrition on pregnancy outcome in pigs: mechanisms and implications for swine production. J. Anim. Sci. 88:E195-E204. crossref(new window)

Zuanon, J. A. S., A. C. Pezzato, C. Ducatti, M. M. Barros, L. E. Pezzato, and J. R. S. Passos. 2007. Muscle ${\delta}^{13}C$ change in Nile Tilapia (Oreochromis niloticus) fingerlings fed on C3- or C4-cycle plants grain-based diets. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 147:761-765. crossref(new window)