JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Dielectric Properties of Ti-doped K(Ta,Nb)O3 Thin Films for Tunable Microwave Applications
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Dielectric Properties of Ti-doped K(Ta,Nb)O3 Thin Films for Tunable Microwave Applications
Bae Hyung-Jin; Koo Jayl; Hong Jun-Pyo;
  PDF(new window)
 Abstract
Ferroelectric materials have been widely investigated for high density dynamic random access memories, opto-electrics, and tunable microwave devices due to their properties. In this study, we have investigated the dielectric properties of Ti doped thin films. By doping Ti Into the system, Ti with a valence value of +4 will substitute Ta or Nb ions with a valence value of +5. This substitution will introduce an acceptor state. Therefore, this introduced acceptor state will reduce dielectric loss by trapping electrons. Using 3% Ti-doped :Ti films were grown in MgO(001) crystals using pulsed laser deposition. First, growth conditions were optimized. A reduction in the loss tangent was observed for Ti-doped relative to undoped films, although a reduction in tunability is also seen. The crystallinity, morphology, and tunability of :Ti films are reported.
 Keywords
Acceptor doping;Dielectric;KTaNbO3;Tunable Microwave;
 Language
English
 Cited by
1.
Electrical Properties of Lead-free$(1-x)(Na_{0.5}K_{0.5})NbO_{3}-xBa(Zr_{0.52}Ti_{0.48})O_{3}$Ceramics,;;;;;

Electronic Materials Letters, 2011. vol.7. 3, pp.201-204 crossref(new window)
2.
Piezoelectric and Dielectric Properties of $(Na_{0.44}K_{0.52})Nb_{0.84}O_{3}-Li_{0.04}(Sb_{0.06}Ta_{0.1})O_{3}$ Ceramics with Sintering Temperature,;;

Electronic Materials Letters, 2011. vol.7. 3, pp.205-208 crossref(new window)
3.
Electrical properties of (Na,K)$NbO_3-BaTiO_3$ ceramics fabricated by a physicochemical method,;;

Journal of Ceramic Processing Research, 2011. vol.12. 4, pp.416-419
4.
Piezoelectric properties of lead-free ${(1-x)(Na_{0.5}K_{0.5})NbO_{3}-xLi(Sb_{0.17}Ta_{0.83})O_{3}}$ ceramics,;;;;;

Journal of Ceramic Processing Research, 2011. vol.12. 3, pp.332-335
5.
Electrical Properties of Lead-Free $0.98(Na_{0.5}K_{0.5}Li_{0.1})NbO_{3}-0.02Ba(Zr_{0.52}Ti_{0.48})O_{3}$ Ceramics by Sintering Temperature,;;;

Electronic Materials Letters, 2012. vol.8. 3, pp.289-293 crossref(new window)
6.
Ferroelectric and Piezoelectric Properties of Lead-Free $(0.98Na_{0.5}K_{0.5})NbO_3-0.02Ba(Zr_{0.52}Ti_{0.48})O_3$ Ceramics with Various Sintering Temperatures,;;;;;

Electronic Materials Letters, 2012. vol.8. 2, pp.147-150 crossref(new window)
7.
Electrical Properties of Lead-free $0.98(Na_{0.5)}K_{0.5}Li_{x})NbO_{3}-0.02Ba(Zr_{0.52}Ti_{0.48})O_{3}$ Ceramics,;;;;;;

Electronic Materials Letters, 2012. vol.8. 1, pp.43-45 crossref(new window)
8.
Dielectric and Piezoelectric Properties of $0.95(Na_{0.5}K_{0.5})NbO_3-0.05CaTiO_3$ Ceramics with $Ag_2O$ Contents,;;;;;;;;;

Electronic Materials Letters, 2012. vol.8. 6, pp.577-580 crossref(new window)
9.
Effect of Sintering Temperatures on the Piezoelectric and Dielectric Properties of $0.98(Na_{0.5}K_{0.5})NbO_3-0.02(Ba_{0.5}Ca_{0.5})TiO_3$ Ceramics,;;;;;;;

Electronic Materials Letters, 2013. vol.9. 2, pp.237-240 crossref(new window)
10.
The Electrical Characterization and Relaxation Behavior of Ag(Ta0.8Nb0.2)O3 Ceramics,;;;;;;;

Transactions on Electrical and Electronic Materials, 2014. vol.15. 2, pp.100-102 crossref(new window)
11.
Effect of sintering temperatures on electrical properties of $0.95(Na_{0.5}K_{0.5})NbO_3-0.05(Ba_{0.5}Sr_{0.5})(Ti_{0.95}Sn_{0.05})O_3$ lead-free ceramics,;;;;;;;;

Journal of Ceramic Processing Research, 2014. vol.15. 1, pp.26-29
1.
The microwave properties of Ag(Ta0.8Nb0.2)O3 thick film interdigital capacitors on alumina substrates, Journal of the Korean Physical Society, 2012, 60, 2, 276  crossref(new windwow)
2.
Electrical properties of lead-free 0.98(Na0.5K0.5Li0.1)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics by sintering temperature, Electronic Materials Letters, 2012, 8, 3, 289  crossref(new windwow)
3.
The Electrical Characterization and Relaxation Behavior of Ag(Ta0.8Nb0.2)O3Ceramics, Transactions on Electrical and Electronic Materials, 2014, 15, 2, 100  crossref(new windwow)
4.
Piezoelectric Properties of ZnO-Doped 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ta0.48)O3Ceramics, Integrated Ferroelectrics, 2012, 140, 1, 140  crossref(new windwow)
5.
Piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3–0.02Ba(ZrxTi(1−x))O3 ceramics, Materials Research Bulletin, 2012, 47, 10, 2863  crossref(new windwow)
6.
Electrical and structural properties of 0.98(Na0.5K0.5)NbO3-0.02LiSbO3 ceramics with ZnO content, Journal of the Korean Physical Society, 2012, 60, 7, 1114  crossref(new windwow)
7.
Ferroelectric and piezoelectric properties of lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics with various sintering temperatures, Electronic Materials Letters, 2012, 8, 2, 147  crossref(new windwow)
8.
Electrical properties of lead-free 0.98(Na0.5K0.5Lix)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics, Electronic Materials Letters, 2012, 8, 1, 43  crossref(new windwow)
9.
Piezoelectric and dielectric properties of (Na0.44K0.52)Nb0.84O3-Li0.04(Sb0.06Ta0.1)O3 ceramics with sintering temperature, Electronic Materials Letters, 2011, 7, 3, 205  crossref(new windwow)
10.
Electrical and Structural Properties of 0.98(Na0.5K0.5)NbO3–0.02Ba(Zr0.52Ti0.48)O3Ceramics with CuO Content, Japanese Journal of Applied Physics, 2012, 51, 7R, 075802  crossref(new windwow)
11.
Dielectric and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 ceramics with Ag2O contents, Electronic Materials Letters, 2012, 8, 6, 577  crossref(new windwow)
12.
Effect of sintering temperatures on the piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3-0.02(Ba0.5Ca0.5)TiO3 ceramics, Electronic Materials Letters, 2013, 9, 2, 237  crossref(new windwow)
13.
Effect of various sintering aids on the piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3–0.02Li0.04(Sb0.06Ta0.1)O3 ceramics, Materials Research Bulletin, 2014, 58, 218  crossref(new windwow)
14.
Electrical properties of lead-free (1-x)(Na0.5K0.5)NbO3-xBa(Zr0.52Ti0.48)O3ceramics, Electronic Materials Letters, 2011, 7, 3, 201  crossref(new windwow)
 References
1.
J.F. Scott, Ferroelectr. Rev. 1. 1 (1998); S.R. Summerfelt, in Ferroelectric Thin Films, edited by R. Ramesh (Kluwer Academic, Netherlands, 1997), Chap. 1, pp. 1

2.
J. Im, O. Auciello, P.K. Baumann, S.K. Streiffer, D.Y. Kaufmann, and A.R. Krauss, Appl. Phys. Lett. 76, 625 (2000) crossref(new window)

3.
Y. Gim, T. Hudson, Y. Fan, C. Kwon, A.T. Findikoglu, B.J. Gibbons, B.H. Park, and Q.X. Jia, Appl. Phys. Lett. 77, 1200 (2000) crossref(new window)

4.
P. Padmini, T.R. Taylor, M.J. Lefevre, A.S. Nagra, R.A. York, and J.S. Speck, Appl. Phys. Lett. 75, 3186 (1999) crossref(new window)

5.
Ikufumi Katayama, Masanobu Shirai, and Koichiro Tanaka, Journal of Luminescence, 102-103, pp. 5459 (2003)

6.
R.W. Babbitt, T.E. Koscica, and W.C. Drach, Microwave Journal, pp. 63, June (1992)

7.
L.C. Sengupta and S. Sengupta, IEEE Trans. On Ultrasonics, Ferroelectrics, and Frequency Control 44, 792 (1997) crossref(new window)

8.
G.V. Belokopytov, I.V. Ivanov, S.I. Katanov, N.N. Moiseev, and P.P. Syrnikov, Sov. Phys. Solid State 24(6) (1982)

9.
Adriaan C. Carter, James S. Horwitz, Douglas B. Chrisey, Jeffrey M. Pond, Steven W. Kirchoefer, and Wontae Chang, Integrated Ferroelectrics, Vol. 17, pp. 273-285, (1997) crossref(new window)

10.
S. Triebwasser, Physical Review, Vol. 114 No. 1, pp. 63, (1959) crossref(new window)

11.
D. Rytz, A. Chatelain, and U.T. Hochli, Phys. Rev. B 27,6830, (1983) crossref(new window)

12.
M.D. Fontana, G. Metrat, J.L. Servoin, and F.Gervais, J. Phys. C: Solid State Phys., 16, pp. 483-514, (1984)

13.
J. Toulouse, X.M. Wang, and L.A. Boatner, Phys. Rev. B, Vol. 43, No. 10, pp. 8297, (1991) crossref(new window)

14.
P. Dubernet, J. Ravez, and A. Pigram, Phys. Stat. Sol. (a) 152, pp. 555, (1995) crossref(new window)

15.
Hans-Martin Christen, D.P. Norton, L.A. Gea, and L.A. Boatner, Thin Solid Films, 312, pp.156-159, (1998) crossref(new window)

16.
S. Yilmaz, T.Venkatesan, and R. Gerhard-Multhaupt, Appl. Phys. Lett. 58, 2479, (1991) crossref(new window)

17.
H.-M. Christen, L.A. Boatner, J.D. Budai, M.F. Chisholm, L.A. Gea, P.J. Marrero, and D.P. Norton, Appl. Phys. Lett. 68, 1488 (1996) crossref(new window)

18.
H.-M. Christen, E.D. Specht, D.P. Norton, M.F. Chisholm, and L.A. Boatner, Appl. Phys. Lett. Vol. 72, No. 20, 2535, (1998) crossref(new window)

19.
M. W. Cole, P. C. Joshi, and M. H. Ervin, J. Appl. Phys. 89, 6336 (2001) crossref(new window)

20.
M. Jain, S. B. Majumder, R. S. Katiyar, F. A. Miranda, and F. W. Van Keuls, Appl. Phys. Lett. 82, 1911 (2003) crossref(new window)

21.
H. S. Kim, M.H. Lim, H.G.Kim, and H.D. Kim, Electrochem. Solid State Lett. 7,11 (2004)

22.
G.A. Samara, L.A. Boatner, Physical Review B. Vol. 61, No. 6. pp. 3889, (1999) crossref(new window)

23.
Gabriel Bitton, Yuri Feldman, and Aharon J. Agranat, Journal of Non-Crystalline Solids, 305, 362-367, (2002) crossref(new window)

24.
R.K. Pattnaik, J. Toulouse, Journal of Physics and Chemistry of Solids, 61, 251-259, (2000) crossref(new window)