JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of Deposition Rate on the Property of ZnO Thin Films Deposited by Pulsed Laser Deposition
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Deposition Rate on the Property of ZnO Thin Films Deposited by Pulsed Laser Deposition
Kim Jae-Won; Kang Hong-Seong; Lee Sang-Yeol;
  PDF(new window)
 Abstract
ZnO thin films were deposited at different repetition rates of 5 Hz and 10 Hz by pulsed laser deposition. X-ray diffraction (XRD) full widths at half maximum (FWHMs) of (002) ZnO peak in ZnO thin film deposited at 5 Hz and 10 Hz was 0.22 and , respectively. The grain size of ZnO thin film deposited at 5 Hz was larger than that of 10 Hz. The variation of repetition rates did not have an effect on the optical property of ZnO thin films. The degradation of the crystalline quality and surface morphology in ZnO thin film deposited at 10 Hz resulted from supersaturation effect by decrease of time interval between a ZnO particle arriving on a substrate by laser shot and a ZnO particle arriving on a substrate by next laser shot.
 Keywords
pulsed laser deposition;repetition rate;ZnO thin film;
 Language
English
 Cited by
1.
RF 스퍼터를 이용하여 ZnO 증착 시 기판의 냉각율이 박막의 c-축 배향성에 미치는 영향,박성현;이능헌;

대한전기학회논문지:전기물성ㆍ응용부문C, 2006. vol.55. 12, pp.560-564
2.
Effect of oxygen on the threshold voltage of a-IGZO TFT,;;;;

Journal of Electrical Engineering and Technology, 2011. vol.6. 4, pp.539-542 crossref(new window)
3.
Ultraviolet and visible light detection characteristics of amorphous indium gallium zinc oxide thin film transistor for photodetector applications,;;

International journal of advanced smart convergence, 2012. vol.1. 1, pp.61-64 crossref(new window)
4.
Densification Mechanism of BaTiO3 Films on Cu Substrates Fabricated by Aerosol Deposition,;;;;

Electronic Materials Letters, 2015. vol.11. 3, pp.388-397 crossref(new window)
1.
Thermally- or optically-biased memristive switching in two-terminal VO2 devices, Current Applied Physics, 2014, 14, 9, 1251  crossref(new windwow)
2.
A zinc-oxide thin-film transistor using a spun-on dielectric and gate electrode, Journal of Physics D: Applied Physics, 2009, 42, 6, 065105  crossref(new windwow)
3.
Densification mechanism of BaTiO3 films on Cu substrates fabricated by aerosol deposition, Electronic Materials Letters, 2015, 11, 3, 388  crossref(new windwow)
4.
Ultraviolet and visible light detection characteristics of amorphous indium gallium zinc oxide thin film transistor for photodetector applications, International journal of advanced smart convergence, 2012, 1, 1, 61  crossref(new windwow)
5.
New PMOS LTPS–TFT pixel for AMOLED to suppress the hysteresis effect on OLED current by employing a reset voltage driving, Solid-State Electronics, 2008, 52, 3, 462  crossref(new windwow)
6.
The improved performance of a transparent ZnO thin-film transistor with AlN/Al2O3double gate dielectrics, Semiconductor Science and Technology, 2009, 24, 5, 055008  crossref(new windwow)
7.
$\hbox{VO}_{2}$ Thin-Film Varistor Based on Metal-Insulator Transition, IEEE Electron Device Letters, 2010, 31, 1, 14  crossref(new windwow)
8.
Effect of barrier layers on the properties of indium tin oxide thin films on soda lime glass substrates, Thin Solid Films, 2009, 517, 14, 4074  crossref(new windwow)
9.
Hydrogenation of nanocrystalline Si thin film transistors employing inductively coupled plasma chemical vapor deposition for flexible electronics, Thin Solid Films, 2007, 515, 19, 7442  crossref(new windwow)
10.
The effects of pulse repetition rate on the structural, optical, and electrical properties of CIGS films grown by pulsed laser deposition, Applied Surface Science, 2015, 351, 772  crossref(new windwow)
11.
Low temperature short channel polycrystalline silicon thin film transistors with high reliability for flat panel display, Thin Solid Films, 2007, 515, 19, 7402  crossref(new windwow)
12.
Characteristics of Nickel-doped Zinc Oxide thin films prepared by sol–gel method, Surface and Coatings Technology, 2008, 202, 22-23, 5650  crossref(new windwow)
13.
Suppression of TFT leakage current effect on active matrix displays by employing a new circular switch, Solid-State Electronics, 2008, 52, 3, 467  crossref(new windwow)
 References
1.
S. King, J.G.E. Gardeniers, and I.W. Boyd, Appl. Surface Sci. 96-98 (1996) 811

2.
W. W. Wenas, A. Yamada, and K. Takahashi, J. Appl. Phys. 70 (1991) 7119 crossref(new window)

3.
H. Ohta, K. Kawamura, M. Orita, M. Hirano, N. Sarukura, and H. Hosono, Appl, Phys. Lett. 77 (2000) 475 crossref(new window)

4.
S. A. Studenikin, Michael Cocivera, W. Kellner and H. Pascher, Journal of Luminescence 91 (2000) 223 crossref(new window)

5.
A. Ohtomo, K. Tamura, K. Saikusa, K. Takahashi, T. Makino, Y. Segawa, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 75 (2003) 2635

6.
Sang Yeol Lee, Eun Sub Shim, Hong Seong Kang, Seong Sik Pang, and Jeong Seok Kang, Thin Solid Films, 473 (2005) 31 crossref(new window)

7.
Kyoung Kook Kim, Hyun Sik Kim, Dae Kue Hwang, Jae Hong Lim, and Seong Ju Park, Applied Physics Letters, 83 (2003) 63 crossref(new window)

8.
Jeong Seok Kang, Hong Seong Kang, Seong Sik Pang, Eun Sub Shim, and Sang Yeol Lee, Thin Solid Films, 443 (2003) 5 crossref(new window)

9.
B.D.Cullity, S.R.Stock, Elements of X-ray Diffraction 3rd Edition, Prentice Hall, 2001, p. 170

10.
Z.K. Tang, Q.K.L. Wong, P. Yu, Appl. Phys. Lett. 72 (1998) 3270 crossref(new window)

11.
B.J. Jin, S.H. Bae, S.Y. Lee, and S. Im, Materials Science and Engineering B71 (2000) 301

12.
Hong Seong Kang, Jeong Seok Kang, Jae Won Kim, and Sang Yeol Lee, J. Appl. Phys 95 (2004) 1246 crossref(new window)

13.
Janos H. Fendler and Imre Dekany, Nanoparticles in Solids and Solutions, NATO ASI Series, (1996)

14.
Deuk-Kyu Hwang, Kyu-Hyun Bang, Min-Chang Jeong, and Jae-Min Myoung, J. Cryst. Growth 254 (2003) 449

15.
Sang Hyuck Bae, Sang Yeol Lee, Beom Jun Jin, and Seongil Im, Applied Surface Science 169-170 (2001) 525 crossref(new window)