JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Carbon Nanotube Synthesis using Magnetic Null Discharge Plasma Production Technology
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Carbon Nanotube Synthesis using Magnetic Null Discharge Plasma Production Technology
Sung, Youl-Moon;
  PDF(new window)
 Abstract
Carbon nanotube (CNT) properties, produced using a magnetic null discharge (MND) plasma production technology, were investigated. We firstly deposited the Fe layer 200 nm in thickness on Si substrate by the magnetic null discharge sputter method at the substrate temperature of , and then prepared CNTs on the catalyst layer by using the magnetic null discharge (MND) based CVD method. CNTs were deposited in a gas mixture of CH4 and N2 at a total pressure of 1 Torr by the MND-CVD method. The substrate temperature and the RF power were and 600W, respectively. The characterization data indicated that the proposed source could synthesize CNTs even under relatively severe conditions for the magnetic null discharge formation.
 Keywords
Carbon nanotubes;Magnetic null discharge plasma;Plasma enhanced chemical vapor deposition;Single-line plasma process;Sputtering;
 Language
English
 Cited by
1.
나노 다공질 구조의 이산화티타늄 박막 제작과 광전변환 특성 고찰,허종현;성열문;

전기학회논문지, 2009. vol.58. 2, pp.322-326
2.
졸겔 연소법을 이용한 염료감응 태양전지용 나노 다공질 구조 $TiO_2$ 제작,한치환;성열문;

전기학회논문지, 2009. vol.58. 2, pp.327-331
1.
60Co γ-ray irradiation effect and degradation behaviors of a carbon nanotube and poly(ethylene-co-vinyl acetate) nanocomposites, Polymer Degradation and Stability, 2008, 93, 7, 1290  crossref(new windwow)
2.
Transparent conductive titanium-doped indium oxide films prepared by a magnetic null discharge sputter source, Vacuum, 2008, 83, 1, 161  crossref(new windwow)
3.
Effect of Duty Cycle on Atmospheric Plasma Generation using Micromachined Electrodes, Japanese Journal of Applied Physics, 2009, 48, 4, 04C196  crossref(new windwow)
 References
1.
S. Iijima, Nature 354 (1991) 56 crossref(new window)

2.
S. Iijima and T. Ichihashi, Nature 363 (1993) 603 crossref(new window)

3.
D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, Nature 363 (1993) 605 crossref(new window)

4.
N. Hamada, S. Sawada and A. Oshiyama, Phys. Rev. Lett. 68 (1992) 1579 crossref(new window)

5.
W.Z. Li, S.S. Xie, L.X. Qain, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Science 274 (1996) 1701 crossref(new window)

6.
A. Thess et al., Science 273 (1996) 483 crossref(new window)

7.
Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282 (1998) 1105 crossref(new window)

8.
T. Uchida, Jpn. J. Appl. Phys. 33 (1994) L43 crossref(new window)

9.
Z. Yoshida, T. Uchida, Jpn. J.Appl. Phys. 34 (1995) 4213 crossref(new window)

10.
T. Sakoda, T. Miyao, K. Uchino, K. Muraoka, Jpn. J. Appl. Phys. 36 (1997) 6981 crossref(new window)

11.
W. Chen, T. Hayashi, M. Itoh, Y. Morikawa, Jpn. J. Appl. Phys. 38 (1999) 4296 crossref(new window)

12.
Y. M. Sung, K. Uchino, K. Muraoka, T. Sakoda, J. Vac. Sci. Technol. A18 (2000) 2149

13.
Y. M. Sung, Y. Okraku-Yirenkyi, M. Otsubo, C. Honda, K. Uchino, K. Muraoka, IEEE Trans. Plasma Sci. 30 (2002) 142

14.
Y. M. Sung, S. Atsuta, J. H. Yang, M. Otsubo, C. Honda, IEEJ Trans. FM, 124 (2004) 565 crossref(new window)

15.
T. Sakoda, Y. M. Sung, J. Vac. Sci. Technol. A 20 (2002) 1964 crossref(new window)

16.
Y. M. Sung, C. Honda, J. Vac. Sci. Technol. B 20 (200) 1457

17.
W. Li, H. Zhang, et al., Appl. Phys. Lett. 70 (1997) 2684 crossref(new window)