Design of Robust PI Controller for Vehicle Suspension System

- Journal title : Journal of Electrical Engineering and Technology
- Volume 3, Issue 1, 2008, pp.135-142
- Publisher : The Korean Institute of Electrical Engineers
- DOI : 10.5370/JEET.2008.3.1.135

Title & Authors

Design of Robust PI Controller for Vehicle Suspension System

Yeroglu, Celaleddin; Tan, Nusret;

Yeroglu, Celaleddin; Tan, Nusret;

Abstract

This paper deals with the design of a robust PI controller for a vehicle suspension system. A method, which is related to computation of all stabilizing PI controllers, is applied to the vehicle suspension system in order to obtain optimum control between passenger comfort and driving performance. The PI controller parameters are calculated by plotting the stability boundary locus in the -plane and illustrative results are presented. In reality, like all physical systems, the vehicle suspension system parameters contain uncertainty. Thus, the proposed method is also used to compute all the parameters of a PI controller that stabilize a vehicle suspension system with uncertain parameters.

Keywords

Gain and phase margins;PI control;Robustness analysis;Stabilization;Uncertain systems;Vehicle suspension system;

Language

English

Cited by

References

1.

K. Matsumoto, K. Yamashita and M. Suzuki, 'Robust H$\infty$ -output feedback control of decoupled automobile active suspension system', IEEE Trans. on Automat. Contr., vol. 44, pp. 392-396, 1999

2.

Elmadany, M., 'Integral and state variable feedback controllers for improved performance in automotive vehicles', Comput Struct., vol. 42, no. 2, pp. 237-244, 1992

3.

Isobe, T. and O. Watanabe, 'New semi-active suspension controller design using quasi-linearlization and frequency shaping', Control Eng. Pract., vol. 6, pp. 1183-1191, 1998

4.

D'Amato, F.J. and D.E. Viassolo, 'Fuzzy control for active suspension', Mechatronics, vol. 10, pp. 897-920, 2000

5.

Kim H.J, H.S. Yaug and Y.P. Park, 'Improving the vehicle performance with active suspension using road-sensing algorithm', Computers and Structure; vol. 80, pp. 1569-1577, 2002

6.

Spentzas K. and A.K. Stratis 'Design of a non-linear hybrid car suspension system using neural network', Mathematics and Computers in Simulation, vol. 60, pp. 369-378, 2002

7.

Yao, G. Z., F. F. Yap, G. Chen, W. H. Li and S. H. Yeo, 'MR damper and its application for semi-active control of vehicle suspension system', Mechatronics, vol. 12, pp. 963-973, 2002

8.

Kuo Y. P. and T. H. S. Li, 'GA-Based Fuzzy PI/PID Controller for Automotive Active Suspension System', IEEE Transactions on Industrial Electronics, vol. 46, pp. 1051-1056, December 1999

9.

Onat C., I. B. Kucukdemirel, S. Cetin and I. Yuksek, 'A comparison study of robust control strategies for autmotive active suspension systems (H$\infty$ , LQR, Fuzzy Logic Control)', International Symposium on Innovations in Inteligent Systems and Applications, Istanbul-Turkey, pp. 291-294, 15-18 June 2005

10.

Zhuang, M. and D. P. Atherton, 'Automatic tuning of optimum PID controllers,' IEE Proc. Part D, vol. 140, pp. 216-224, 1993

11.

Astrom, K. J. and T. Hagglund, PID Controllers: Theory, Design, and Tuning. Instrument Society of America, 1995

12.

Ho, M. T., A. Datta and S. P. Bhattacharyya, 'A new approach to feedback stabilization,' Proc. of the 35th CDC, pp. 4643-4648, 1996

13.

Ho, M. T., A. Datta and S. P. Bhattacharyya, 'A linear programming characterization of all stabilizing PID controllers,' Proc. of Amer. Contr. Conf., 1997

14.

Ho, M. T., A. Datta and S. P. Bhattacharyya, 'Design of P, PI, and PID controllers for interval plants,' Proc. of Amer. Contr. Conf., Philadelphia, June 1998

15.

N. Tan, I. Kaya, C. Yeroglu and D. P. Atherton 'Computation of stabilizing PI and PID controllers using the stability boundary locus', Energy Conversion and Management, vol. 47, pp. 3045-3058, 2006

16.

Soylemez, M. T., N. Munro and H. Baki, 'Fast calculation of stabilizing PID controllers,' Automatica, vol. 39, pp. 121-126, 2003

17.

Ackermann, J. and D. Kaesbauer, 'Design of robust PID controllers,' European Control Conference, pp. 522-527, 2001

18.

Shafiei, Z. and A. T. Shenton, 'Frequency domain design of PID controllers for stable and unstable systems with time delay,' Automatica, vol. 33, pp. 2223-2232, 1997

19.

Huang, Y. J. and Y. J. Wang, 'Robust PID tuning strategy for uncertain plants based on the Kharitonov theorem,' ISA Transactions, vol. 39, pp. 419-431, 2000

20.

Kharitonov, V. L., 'Asymptotic stability of an equilibrium position of a family of systems of linear differential equations,' Differential Equations, vol. 14, pp. 1483-1485, 1979

21.

Barmish, B. R., C. V. Holot, F. J. Kraus and R. Tempo, 'Extreme points results for robust stabilization of interval plants with first order compensators,' IEEE Trans. on Automat. Contr., vol. 38, pp. 1734-1735, 1993

22.

Franklin, G.F., J.D. Powell and A. E. Naeini., 'Feedback Control of Dynamic Systems', Prentice Hall, N.J., 2002