Advanced SearchSearch Tips
Design of Robust PI Controller for Vehicle Suspension System
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Design of Robust PI Controller for Vehicle Suspension System
Yeroglu, Celaleddin; Tan, Nusret;
  PDF(new window)
This paper deals with the design of a robust PI controller for a vehicle suspension system. A method, which is related to computation of all stabilizing PI controllers, is applied to the vehicle suspension system in order to obtain optimum control between passenger comfort and driving performance. The PI controller parameters are calculated by plotting the stability boundary locus in the -plane and illustrative results are presented. In reality, like all physical systems, the vehicle suspension system parameters contain uncertainty. Thus, the proposed method is also used to compute all the parameters of a PI controller that stabilize a vehicle suspension system with uncertain parameters.
Gain and phase margins;PI control;Robustness analysis;Stabilization;Uncertain systems;Vehicle suspension system;
 Cited by
Robust controller design for First order Plus Time Delay systems using Kharitonov Theorem, IFAC Proceedings Volumes, 2014, 47, 1, 184  crossref(new windwow)
Comparison of Robust Control Techniques for Use in Continuous Stirred Tank Reactor Control, IFAC-PapersOnLine, 2015, 48, 14, 284  crossref(new windwow)
Identification, uncertainty modeling and robust controller design for an electromechanical actuator, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230, 20, 3631  crossref(new windwow)
K. Matsumoto, K. Yamashita and M. Suzuki, 'Robust H$\infty$ -output feedback control of decoupled automobile active suspension system', IEEE Trans. on Automat. Contr., vol. 44, pp. 392-396, 1999 crossref(new window)

Elmadany, M., 'Integral and state variable feedback controllers for improved performance in automotive vehicles', Comput Struct., vol. 42, no. 2, pp. 237-244, 1992 crossref(new window)

Isobe, T. and O. Watanabe, 'New semi-active suspension controller design using quasi-linearlization and frequency shaping', Control Eng. Pract., vol. 6, pp. 1183-1191, 1998 crossref(new window)

D'Amato, F.J. and D.E. Viassolo, 'Fuzzy control for active suspension', Mechatronics, vol. 10, pp. 897-920, 2000 crossref(new window)

Kim H.J, H.S. Yaug and Y.P. Park, 'Improving the vehicle performance with active suspension using road-sensing algorithm', Computers and Structure; vol. 80, pp. 1569-1577, 2002 crossref(new window)

Spentzas K. and A.K. Stratis 'Design of a non-linear hybrid car suspension system using neural network', Mathematics and Computers in Simulation, vol. 60, pp. 369-378, 2002 crossref(new window)

Yao, G. Z., F. F. Yap, G. Chen, W. H. Li and S. H. Yeo, 'MR damper and its application for semi-active control of vehicle suspension system', Mechatronics, vol. 12, pp. 963-973, 2002 crossref(new window)

Kuo Y. P. and T. H. S. Li, 'GA-Based Fuzzy PI/PID Controller for Automotive Active Suspension System', IEEE Transactions on Industrial Electronics, vol. 46, pp. 1051-1056, December 1999 crossref(new window)

Onat C., I. B. Kucukdemirel, S. Cetin and I. Yuksek, 'A comparison study of robust control strategies for autmotive active suspension systems (H$\infty$, LQR, Fuzzy Logic Control)', International Symposium on Innovations in Inteligent Systems and Applications, Istanbul-Turkey, pp. 291-294, 15-18 June 2005

Zhuang, M. and D. P. Atherton, 'Automatic tuning of optimum PID controllers,' IEE Proc. Part D, vol. 140, pp. 216-224, 1993

Astrom, K. J. and T. Hagglund, PID Controllers: Theory, Design, and Tuning. Instrument Society of America, 1995

Ho, M. T., A. Datta and S. P. Bhattacharyya, 'A new approach to feedback stabilization,' Proc. of the 35th CDC, pp. 4643-4648, 1996

Ho, M. T., A. Datta and S. P. Bhattacharyya, 'A linear programming characterization of all stabilizing PID controllers,' Proc. of Amer. Contr. Conf., 1997

Ho, M. T., A. Datta and S. P. Bhattacharyya, 'Design of P, PI, and PID controllers for interval plants,' Proc. of Amer. Contr. Conf., Philadelphia, June 1998

N. Tan, I. Kaya, C. Yeroglu and D. P. Atherton 'Computation of stabilizing PI and PID controllers using the stability boundary locus', Energy Conversion and Management, vol. 47, pp. 3045-3058, 2006 crossref(new window)

Soylemez, M. T., N. Munro and H. Baki, 'Fast calculation of stabilizing PID controllers,' Automatica, vol. 39, pp. 121-126, 2003 crossref(new window)

Ackermann, J. and D. Kaesbauer, 'Design of robust PID controllers,' European Control Conference, pp. 522-527, 2001

Shafiei, Z. and A. T. Shenton, 'Frequency domain design of PID controllers for stable and unstable systems with time delay,' Automatica, vol. 33, pp. 2223-2232, 1997 crossref(new window)

Huang, Y. J. and Y. J. Wang, 'Robust PID tuning strategy for uncertain plants based on the Kharitonov theorem,' ISA Transactions, vol. 39, pp. 419-431, 2000 crossref(new window)

Kharitonov, V. L., 'Asymptotic stability of an equilibrium position of a family of systems of linear differential equations,' Differential Equations, vol. 14, pp. 1483-1485, 1979

Barmish, B. R., C. V. Holot, F. J. Kraus and R. Tempo, 'Extreme points results for robust stabilization of interval plants with first order compensators,' IEEE Trans. on Automat. Contr., vol. 38, pp. 1734-1735, 1993 crossref(new window)

Franklin, G.F., J.D. Powell and A. E. Naeini., 'Feedback Control of Dynamic Systems', Prentice Hall, N.J., 2002