JOURNAL BROWSE
Search
Advanced SearchSearch Tips
On Power System Frequency Control in Emergency Conditions
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
On Power System Frequency Control in Emergency Conditions
Bevrani, H.; Ledwich, G.; Ford, J. J.; Dong, Z.Y.;
  PDF(new window)
 Abstract
Frequency regulation in off-normal conditions has been an important problem in electric power system design/operation and is becoming much more significant today due to the increasing size, changing structure and complexity of interconnected power systems. Increasing economic pressures for power system efficiency and reliability have led to a requirement for maintaining power system frequency closer to nominal value. This paper presents a decentralized frequency control framework using a modified low-order frequency response model containing a proportional-integral(PI) controller. The proposed framework is suitable for near-normal and emergency operating conditions. An control technique is applied to achieve optimal PI parameters, and an analytic approach is used to analyse the system frequency response for wide area operating conditions. Time-domain simulations with a multi-area power system example show that the simulated results agree with those predicted analytically.
 Keywords
frequency control;power system;robust performance;;emergency condition;frequency response;
 Language
English
 Cited by
1.
Introduction of Generator Unit Controller and Its Tuning for Automatic Generation Control in Korean Energy Management System (K-EMS),;;

Journal of Electrical Engineering and Technology, 2011. vol.6. 1, pp.42-47 crossref(new window)
1.
Introduction of Generator Unit Controller and Its Tuning for Automatic Generation Control in Korean Energy Management System (K-EMS), Journal of Electrical Engineering and Technology, 2011, 6, 1, 42  crossref(new windwow)
 References
1.
P. Kundur, Power system stability and control, Englewood Cliffs, NJ: McGraw-Hill, 1994

2.
O. I. Elgerd, C. Fosha, 'Optimum megawatt-frequency control of multiarea electric energy systems,' IEEE Trans. Power Apparatus & Systems, Vol. PAS-89, No. 4, pp. 556-563, 1970 crossref(new window)

3.
C. Fosha, O. I. Elgerd, 'The megawatt-frequency control problem: a new approach via optimal control,' IEEE Trans. Power Apparatus & Systems, Vol. PAS-89, no. 4, pp. 563-577, 1970 crossref(new window)

4.
Ibraheem, P. Kumar, and P. Kothari, 'Recent philosophies of automatic generation control strategies in power systems,' IEEE Transactions on Power Systems, Vol. 20, No. 1, pp. 346-357, February, 2005 crossref(new window)

5.
B. J. Kirby, J. Dyer, C. Martinez et al., Frequency control concerns in the North American Electric Power System, ORNL/TM-2003/41, 2002, Available on-line at http://www.ornl.gov/sci/btc/apps/ Restructuring/ORNLTM200341.pdf

6.
H. Bevrani, Decentralized robust load-frequency control synthesis in restructured power systems. PhD dissertation, Osaka University, Japan, 2004

7.
NEMMCO, Frequency & time deviation monitoring in NEM, Vol. 2007, NEMCO, 2007, Available online at http://www.nemmco.com.au/powersystemops/250-0069.pdf

8.
D. L. H. Aik, 'A general-order system frequency response model incoporating load shedding: analytic modeling and applications,' IEEE Transactions on Power Systems, Vol. 21, No. 2, pp. 709-717, May, 2006 crossref(new window)

9.
P. M. Anderson, and M. Mirheydar, 'A Low-Order System Frequency Response Model,' IEEE Transactions on Power Systems, Vol. 5, No. 3, pp. 720-729, 1990 crossref(new window)

10.
M. B. Djukanovic, D. P. Popovic, D. J. Sobajic et al., 'Prediction of power system frequency response after generator outages neural nets,' IEE Proceedings-C, Vol. 140, No. 5, pp. 389-398, September, 1993 crossref(new window)

11.
Q. Zhao, and C. Chen, 'Study on a system frequency response model for a large industrial area load shedding,' Electrical Power and Energy Systems, Vol. 27, pp. 233-237, 2005 crossref(new window)

12.
P. M. Anderson, and A. A. Fouad, Power system control and stability, Piscataway, NJ: IEEE Press, 1994

13.
H. Bevrani, Y. Mitani and K. Tsuji, 'Robust decentralized load-frequency control using an iterative linear matrix inequalities algorithm,' IEE Proc. Gener. Transm. Distrib., Vol. 150, No. 3, pp. 347-354, 2004

14.
P. Kundur, J. Paserba, v. Ajjarapu, et al, 'Definition and classification of power system stability,' IEEE Transactions on Power Systems, Vol. 19, No. 2, pp. 1387-1401, 2004 crossref(new window)

15.
D. Rerkpreedapong, A. Hasanovic and A. Feliachi, 'Robust load frequency control using genetic algorithms and linear matrix inequalities,' IEEE Transactions on Power Systems, Vol. 18, No. 2, pp. 855-861, 2003 crossref(new window)

16.
C. F. Juang, C. F. Lu, 'Load-frequency control by hybrid evolutionary fuzzy PI controller,' IEE Proc. Gener. Transm. Distrib., Vol. 2, No. 153, pp. 196-204, 2006

17.
S. Boyd, L. El. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, SIAM Books, Vol. 15, Philadelphia, 1994

18.
N. Jaleeli, D. N. Ewart and L. H. Fink, 'Understanding automatic generation control,' IEEE Trans. Power Syst., Vol. 7, No. 3, pp. 1106-1112, 1992 crossref(new window)

19.
A. J. Wood and B. F. Wollenberg, Power generation operation and control. NewYork: Wiley, 1984

20.
V.L. Syrmos, C.T. Abdallah, P. Dorato, and K. Grigoriadis, 'Static output feedback: A survey,' Automatica, Vol. 33, no. 2, pp. 125-137, 1997 crossref(new window)

21.
H. Bevrani, T. Hiyama 'Robust load-frequency regulation: a real-time laboratory experiment,' Optimal Control Applications and Methods, Vol. 28, No. 6, pp. 419-433, 2007 crossref(new window)

22.
P. Gahinet, A. Nemirovski, A. J. Laub and M. Chilali, LMI Control Toolbox, The MathWorks, Inc., 1995

23.
H. Bevrani, T. Hiyama 'Multiobjective PI/PID control design using an iterative linear matrix inequalities algorithm,' Int. Journal of Control, Automation and Systems, Vol. 5, No.2, pp. 117-127, April, 2007

24.
H. Bevrani, T. Hiyama, and Y. Mitani 'Power system dynamic stability and voltage regulation enhancement using an optimal gain vector,' Control Engineering Practice, Vol. 16, No. 9, pp. 1109-1119, 2008 crossref(new window)

25.
NEMMCO, FCAS Constraints, NEMMCO, 2006, Available on-line at http://www.nemmco.com.au/ancillary_services/160-0272.pdf

26.
J. S. Thorp, X. Wang, K. M. Hopkinson et al., 'Agent technology applied to the protection of power systems,' Autonomous systems and Intelligent agents in power system control and operation, C. Rehtanz, ed., pp. 113-154, Berlin Heidelberg: Springer, 2003

27.
J. J. Ford, H. Bevrani, G. Ledwich, 'Adaptive load shedding and regional protection,' To be appeared in European Trans. on Electrical Power

28.
H. Bevrani, T. Hiyama 'A control strategy for LFC design with communication delays,' In Proceeding of the 7th Int. Power Engineering Conf. (IPEC), Singapore, Dec. 2005

29.
NECA, 'Reliability standards,' 2004, Available online at http://www.neca.com.au/SubCategory7127.html?SubCategoryID=114