JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Mach-Zehnder Type Tandem Optical Switch/Modulator using a Single-Mode Interconnecting Waveguide and Its Switching Characteristics
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Mach-Zehnder Type Tandem Optical Switch/Modulator using a Single-Mode Interconnecting Waveguide and Its Switching Characteristics
Choi, Young-Kyu;
  PDF(new window)
 Abstract
In this paper, an optical switch/modulator is designed and its light propagating characteristics analyzed using a simplified BPM. The distinctive feature of this switch/modulator is that all its waveguide branches are designed as single-mode. The principle of the device is based on the coupled mode theory in the Y-junction interconnecting waveguide. In spite of the fact all waveguides are designed as single-mode, by adjusting the interconnecting waveguide length`of the device the same characteristics as existing up to date devices are obtainable. Numerical results show that the switching characteristics periodically depend upon an interconnecting waveguide length with a spatial of about in the step index waveguide. The design concept would therefore be utilized effectively in fabricating a monolithic high density optical integrated circuit.
 Keywords
Optical switch/modulator;BPM;Waveguide design;
 Language
English
 Cited by
1.
Fiber-optic Hydrogen Sensor Based on Polarization-diversity Loop Interferometer,;;;;;;

Journal of the Korean Physical Society, 2013. vol.62. 4, pp.575-580 crossref(new window)
1.
Thermally- or optically-biased memristive switching in two-terminal VO2 devices, Current Applied Physics, 2014, 14, 9, 1251  crossref(new windwow)
2.
Fiber-optic hydrogen sensor based on polarization-diversity loop interferometer, Journal of the Korean Physical Society, 2013, 62, 4, 575  crossref(new windwow)
3.
Bidirectional laser triggering of planar device based on vanadium dioxide thin film, Optics Express, 2014, 22, 8, 9016  crossref(new windwow)
4.
Enhanced inline conversion of fiber Bragg grating spectra based on increased polarization controllability, Optics Communications, 2013, 293, 43  crossref(new windwow)
5.
Current-Controlled Tunable Fiber Multiwavelength Filter Based on Polarization-Diversity Loop Structure, Japanese Journal of Applied Physics, 2011, 50, 6R, 062502  crossref(new windwow)
6.
Study on spectral deviations of high-order optical fiber comb filter based on polarization-diversity loop configuration, Optics Communications, 2013, 301-302, 159  crossref(new windwow)
7.
Laser-Assisted Control of Electrical Oscillation in VO2Thin Films Grown by Pulsed Laser Deposition, Japanese Journal of Applied Physics, 2012, 51, 10R, 107302  crossref(new windwow)
8.
Photo-Assisted Electrical Oscillation in Two-Terminal Device Based on Vanadium Dioxide Thin Film, Journal of Lightwave Technology, 2012, 30, 16, 2718  crossref(new windwow)
9.
Current-Controlled Tunable Fiber Multiwavelength Filter Based on Polarization-Diversity Loop Structure, Japanese Journal of Applied Physics, 2011, 50, 6, 062502  crossref(new windwow)
10.
Photo-assisted bistable switching using Mott transition in two-terminal VO2 device, Applied Physics Letters, 2012, 100, 1, 011908  crossref(new windwow)
 References
1.
Gonnan, T., and Haxha, S., 'Design optimization of Zcut lithium niobate electrooptic modulator with profiled metal electrodes and waveguide', IEEE, J. Lightwave Tech., vol. 25, no. 12, pp. 3722-3728, Dec. 2007

2.
Yi-Kuei, and Wang, Way-Seen, 'Design and fabrication of sidewalls-extended electrode configuration for ridged lithium niobate electrooptical modulator', IEEE, J. Lightwave Tech., vol. 26, no. 2, pp. 286-290, Jan. 2008 crossref(new window)

3.
Haxha, S., Rahman, B. M. A., and Grattan, K. T. V., ' Bandwidth estimation for ultra-high-speed lithium niobate modulators'’, Appl. Opt. , vol. 42, no. 15, pp. 2674-2682, May 2003 crossref(new window)

4.
Tomeh, M. M., Goasguen, S., and EI-Ghazaly, S. M., 'Time-domain optical response of an electrooptic modulator using FDTD', IEEE Trans. Microw. The ory Tech., vol. 49, no. 12, pp. 2276-2281, Dec. 2001 crossref(new window)

5.
Leuthold, J., Besse, P. A., Ecker, J., Gamper, E., Dulk, M., and Melchior, H., ' All-optical space switches with gain and principally ideal extinction ratios', IEEE. J Quantum Electron., vol. 34, pp. 622-633, Apr. 1998 crossref(new window)

6.
Haruna, M., and Koyama, J., ' Electrooptical branchmg waveguide switches and the application to 1x4 optical switching networks', IEEE. J. Lightwave Tech vol. LT-1 No. 1, pp. 223-227, Mar. 1983

7.
Weissman, Z., Hardy, A., and Marom, E., 'ModeDependent radiation loss in Y-junctions and directional couplers', IEEE., J Quantum Electron., vol. 25, No. 6, June, 1989

8.
Szustalkowski, M., and Marciniak, M., ' Light power division in a monomode Ti:$LiNbO_3$ waveguide Yjunction power-combiner-power-divider sequence', Optics Commun. vol. 81 , No. 1, 2, Feb. 1991

9.
Leuthold, J., Ecker, J., Gamper, E., Besse, P.A., and Melchior, H., 'Multimode interference couplers for the conversion and combining of zero- and first-order modes', J Lightwave Technol, vol. 16, pp. 1228-1239, July, 1998 crossref(new window)

10.
Silberg, Y., Perlmutter, P., and Baron, J. E., 'Digital optical switch', Appl. Phys. Lett., vol. 51, pp. 1230-1232, 1987 crossref(new window)

11.
Papuchon, M., and Roy, A., 'Electrically active optical bifurcation; BOA', Appl. Phys. Lett. vol. 31 , no. 4, pp. 266-267, Aug. 1977 crossref(new window)

12.
Tasi, C. S., Kim, B., and EI-Akkari, F. R., 'Optical channel waveguide switch and coupler using total intemal reflection' , IEEE. J Quantμm Electron., vol. QE-14, no. 7, pp. 513-517, July, 1978

13.
Martin, W. E., 'Anew waveguide switch/modulator for integrated optics', Appl. Phys. Letters, vol. 26, no. 10, pp. 562, May 1975

14.
Fujiwara, T., Izutsu, M., Murata, H., Tanabe, Y., and Sueta, T., ' Analysis of SHG in fonn of cerenkov radiation,' IEICE Tech. Report (Japanese), vol. 88, no. 416, pp. 77-83, June 1989

15.
Thylen, L., 'The beam propagation method: an analysis of its applicability,' Optical and Quantum Electronics, vol. 15, no. 10, pp. 433-448, Sept. 1983 crossref(new window)