JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Optimal Power Flow with Discontinous Fuel Cost Functions Using Decomposed GA Coordinated with Shunt FACTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Optimal Power Flow with Discontinous Fuel Cost Functions Using Decomposed GA Coordinated with Shunt FACTS
Mahdad, Belkacem; Srairi, K.; Bouktir, T.; Benbouzid, M.EL.;
  PDF(new window)
 Abstract
This paper presents efficient parallel genetic algorithm (EPGA) based decomposed network for optimal power flow with various kinds of objective functions such as those including prohibited zones, multiple fuels, and multiple areas. Two coordinated sub problems are proposed: the first sub problem is an active power dispatch (APD) based parallel GA; a global database generated containing the best partitioned network: the second subproblem is an optimal setting of control variables such as generators voltages, tap position of tap changing transformers, and the dynamic reactive power of SVC Controllers installed at a critical buses. The proposed approach tested on IEEE 6-bus, IEEE 30-bus and to 15 generating units and compared with global optimization methods (GA, DE, FGA, PSO, MDE, ICA-PSO). The results show that the proposed approach can converge to the near solution and obtain a competitive solution with a reasonable time.
 Keywords
Parallel Genetic Algorithm;Decomposed Network;System loadability;FACTS;SVC;Optimal power flow;Planning and control;
 Language
English
 Cited by
1.
Application of Lyapunov Theory and Fuzzy Logic to Control Shunt FACTS Devices for Enhancing Transient Stability in Multimachine System,;

Journal of Electrical Engineering and Technology, 2012. vol.7. 5, pp.672-680 crossref(new window)
1.
Application of Lyapunov Theory and Fuzzy Logic to Control Shunt FACTS Devices for Enhancing Transient Stability in Multimachine System, Journal of Electrical Engineering and Technology, 2012, 7, 5, 672  crossref(new windwow)
2.
Faster evolutionary algorithm based optimal power flow using incremental variables, International Journal of Electrical Power & Energy Systems, 2014, 54, 198  crossref(new windwow)
 References
1.
J. A. Momoh, M. E. Elhawary, and R. Adapa 'A review of selected optimal power flow litterature to 1993 partl: nonlinear and quadratic programming approaches,' IEEE Trans. Power. Syst., Vol. 4 , no.1 , pp.96-104, 1999

2.
M. Huneault, and F. D. Galiana, 'A survey of the optimal power flow literature ' IEEE Trans. Power Systems, vol.6, no.2, pp.762-770, May, 1991 crossref(new window)

3.
C. C. Kuo, 'A novel string tructure for economic dispatch prblems with practical constraints,' Journal of Energy Conversion and management, Elsevier, vol.49, pp.3571-3577, 2008 crossref(new window)

4.
D. He, F. Wang, Z. Mao, 'A hybrid genetic algorithm approach based on differential evolution for economic dispatch with valve-point effect,' Journal of Energy Conversion and management, EIsevier, vol.30, pp.31-38, 2008 crossref(new window)

5.
B. Mahdad, T. Bouktir, K. Srairi, ' Optimal power flow for large-scale power system with shunt F ACTS using fast parallel GA,'. The 14th IEEE Mediterranean on Electrotechnical Conference, 2008. MELECON 5-7 May 2008. pp. 669-676, Digital Object Identifier 10.1 109/MELCON.2008.4618512

6.
S. N. Sivanandam, S.N Deepa, Introduction to Genetic Algorithm, Springer-Verlag Berlin Heidelberg, 2008

7.
R. L. Haupt, S. E. Haupt, Practical Genetic Algorithms, 2nd. Reading, John Willey & Sons, 2004

8.
A. Saini, D. K. Chaturvedi, A. K. Saxena, ' Optimal power flow soultion: a GA-Fuzzy system approach ,' International Journal of Emerging Electric Power Systems, vol.5, no.2, pp.1 -21(2006)

9.
C. R. Feurt-Esquivel, E. Acha, Tan SG, JJ. Rico, ' Efficient object oriented power systems software for the analysis of large-scale networks containing F ACTS controlled branches,' IEEE Trans. Power Systems, vol.13, no.2, pp.464-472, May, 1998 crossref(new window)

10.
J. D, Weber, Implementation of a newton-based optimal power flow in a power system simulation envirenment, Master of science in electrical engineering, college of the university ofillinois at Urbana-Champaign;1997. http://energy.ece.uiuc.edu/jamie/publicat. htm

11.
M. S. Osman, M. A, Abo-Sinna, A. A. Mousa, 'A solution to the optimal powεr flow using genetic algorithm,' Journal of Appl. Math. Comput, vol.30, no.14, no.1 , pp.l05-111 , 1999

12.
C. A, Roa-Sepulveda, B. J, Pavez-Lazo, 'A solution to the optimal power flow using simulated annealing, ' Journal of Electric Power Energy and system(Elesevier), vol.25, no.1, pp.563-571 , 2002

13.
J, Yuryevich, K. P, Wong, 'Ev이utionary progralllilling based optimal power flow algorithm,' IEEE Trans. Power Systems, vol.14, no.4, pp.1245-1250, 1999 crossref(new window)

14.
M. A. Abido, ' Optimal power flow using particle swarm optimization,' Journal of Electric Power Compenents and System, vol.30, no.5, pp.469-483, 2002 crossref(new window)

15.
M. A. Abido, ' Optimal power flow using tabu search algorithm, ' Journal of Electric Power Energy and System(Elesevier), vol.24, no.7, pp.563-571 , 2002 crossref(new window)

16.
D. C. Walters, G. B, Sheble, ' Genetic algorithm solution of economic dispatch with valve point loading,' IEEE Trans. Power Systems, vol.8, no.3, pp.1325-1332, 1993 crossref(new window)

17.
O. Alsac, B. Stott, ' Optimal load low with steadystate security,' IEEE Trans. Power Apparutus, vol.93, no.3, pp.745-751, 1974 crossref(new window)

18.
W. Ondskul, T. Tantimaporn, 'Optimal power flow by improved evolutionary programming,' Journal of Electric Prwer Compenents and system, vol.34, no.1, pp.79-95, 2006 crossref(new window)

19.
S. Sayah, K. Zehar , ' Modified differential evolution algorithm for optimal power flow with non-smooth cost functions,' Journal of Energy Conversioin and management, Elsevier, vol.49, pp.3362-3366, 2008 crossref(new window)

20.
R. C. Bansal, ' Otimization methods for electric power systems: an overview,' International Journal of Emerging Electric Power Systems, vol.2, no.1, pp.1-23, 2005

21.
A. G. Bakistzis, P. N. Biskas, C. E. Zoumas, and V. Petridis, ' Optimal power f10w by enhanced genetic algorithm, 'IEEE Trans. Power Systems, vol. 17, no.2, pp.229-236, May, 2002 crossref(new window)

22.
M. Varadarajan, K. S. Swarup, ' S01ving multiobjεctive optimal power flow using diffential evolution,' IET Gener. Transm.Disrib., vol.2, no.5, pp.720-730, 2008 crossref(new window)

23.
M. Basu, ' Optimal power flow with F ACTS devices using differential evolution,' Electrical Power & Energy Systems (Elsevier), vol.30, pp.150-156, 2008 crossref(new window)

24.
Z. L. Gaing, ' Particle swarm optimization to solving the economic dispatch considering the generator constraints, ' IEEE Trans. Power Systems, vol. 18, no. 3, pp. 1187-1195, 2003 crossref(new window)

25.
J. G. Vlachogiannis, and K. Y. Lee, 'Economic dispatch-A comparative study on heristic optimization techniques with an improved coordinated aggregationbased PSO,' IEEE Trans. Power Systems, vol.24, no.2, pp.991-10001 , 2009 crossref(new window)