JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Improved Direct Torque Control of Permanent Magnet Synchronous Electrical Vehicle Motor with Proportional-Integral Resistance Estimator
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Improved Direct Torque Control of Permanent Magnet Synchronous Electrical Vehicle Motor with Proportional-Integral Resistance Estimator
Hartani, Kada; Miloud, Yahia; Miloudi, Abdellah;
  PDF(new window)
 Abstract
Electric vehicles (EVs) require fast torque response and high drive efficiency. This paper describes a control scheme of fuzzy direct torque control of permanent magnet synchronous motor for EVs. This control strategy is extensively used in EV application. With direct torque control (DTC), the electromagnetic torque and stator flux can be estimated using the measured stator voltages and currents. The estimation depends on motor parameters, except for the stator resistance. The variation of stator resistance due to changes in temperature or frequency downgrades the performance of DTC, which is controlled by introducing errors in the estimated flux linkage vector and the electromagnetic torque. Thus, compensation for the effect of stator resistance variation becomes necessary. This work proposes the estimation of the stator resistance and its compensation using a proportional-integral estimation method. An electronic differential has been also used, which has the advantage of replacing loose, heavy, and inefficient mechanical transmission and mechanical differential with a more efficient, light, and small electric motors that are directly coupled to the wheels through a single gear or an in-wheel motor.
 Keywords
Direct torque control;Electric vehicle;Fuzzy logic;Electronic differential;
 Language
English
 Cited by
1.
Fuzzy PD Speed Controller for Permanent Magnet Synchronous Motors,;;;

Journal of Power Electronics, 2011. vol.11. 6, pp.819-823 crossref(new window)
2.
T-S Fuzzy Tracking Control of Surface-Mounted Permanent Magnet Synchronous Motors with a Rotor Acceleration Observer,;;;

Journal of Power Electronics, 2012. vol.12. 2, pp.294-304 crossref(new window)
3.
Implementation of a Robust Fuzzy Adaptive Speed Tracking Control System for Permanent Magnet Synchronous Motors,;;;

Journal of Power Electronics, 2012. vol.12. 6, pp.904-911 crossref(new window)
4.
Sensorless Fuzzy Direct Torque Control for High Performance Electric Vehicle with Four In-Wheel Motors,;;;;

Journal of Electrical Engineering and Technology, 2013. vol.8. 3, pp.530-543 crossref(new window)
5.
A New Multimachine Robust Based Anti-skid Control System for High Performance Electric Vehicle,;;

Journal of Electrical Engineering and Technology, 2014. vol.9. 1, pp.214-230 crossref(new window)
6.
Sliding Mode Control of SPMSM Drivers: An Online Gain Tuning Approach with Unknown System Parameters,;;;;;

Journal of Power Electronics, 2014. vol.14. 5, pp.980-988 crossref(new window)
1.
T–S Fuzzy-Model-Based Sliding-Mode Control for Surface-Mounted Permanent-Magnet Synchronous Motors Considering Uncertainties, IEEE Transactions on Industrial Electronics, 2013, 60, 10, 4281  crossref(new windwow)
2.
Sensorless Fuzzy Direct Torque Control for High Performance Electric Vehicle with Four In-Wheel Motors, Journal of Electrical Engineering and Technology, 2013, 8, 3, 530  crossref(new windwow)
3.
Control Algorithms of Propulsion Unit with Induction Motors for Electric Vehicle, Advances in Electrical and Computer Engineering, 2014, 14, 2, 69  crossref(new windwow)
4.
Robust speed control method for permanent magnet synchronous motor, IET Electric Power Applications, 2012, 6, 7, 399  crossref(new windwow)
5.
Implementation of a Robust Fuzzy Adaptive Speed Tracking Control System for Permanent Magnet Synchronous Motors, Journal of Power Electronics, 2012, 12, 6, 904  crossref(new windwow)
6.
Sliding Mode Control of SPMSM Drivers: An Online Gain Tuning Approach with Unknown System Parameters, Journal of Power Electronics, 2014, 14, 5, 980  crossref(new windwow)
7.
Output Feedback Adaptive Dynamic Surface Control of Permanent Magnet Synchronous Motor with Uncertain Time Delays via RBFNN, Discrete Dynamics in Nature and Society, 2014, 2014, 1  crossref(new windwow)
8.
Fuzzy Sliding Mode Speed Controller for PM Synchronous Motors With a Load Torque Observer, IEEE Transactions on Power Electronics, 2012, 27, 3, 1530  crossref(new windwow)
9.
SDRE-Based Near Optimal Control System Design for PM Synchronous Motor, IEEE Transactions on Industrial Electronics, 2012, 59, 11, 4063  crossref(new windwow)
10.
Certainty equivalence adaptive speed controller for permanent magnet synchronous motor, Mechatronics, 2012, 22, 6, 811  crossref(new windwow)
11.
Fuzzy PD Speed Controller for Permanent Magnet Synchronous Motors, Journal of Power Electronics, 2011, 11, 6, 819  crossref(new windwow)
12.
Stability Enhancement of Four-in-Wheel Motor-Driven Electric Vehicles Using an Electric Differential System, Journal of Power Electronics, 2015, 15, 5, 1244  crossref(new windwow)
13.
A New Multimachine Robust Based Anti-skid Control System for High Performance Electric Vehicle, Journal of Electrical Engineering and Technology, 2014, 9, 1, 214  crossref(new windwow)
14.
A new shared control for lane keeping and road departure prevention, Vehicle System Dynamics, 2016, 54, 1, 86  crossref(new windwow)
15.
T-S Fuzzy Tracking Control of Surface-Mounted Permanent Magnet Synchronous Motors with a Rotor Acceleration Observer, Journal of Power Electronics, 2012, 12, 2, 294  crossref(new windwow)
 References
1.
C. Chan, “The state of the art of electric and hybrid vehicles,” Proc. Of the IEEE, Vol. 90, No. 2, pp. 247-275, Feb. 2002. crossref(new window)

2.
J. Faiz, M.B.B. Sharifian, A. Keyhani, A.B. Proca, “Sensorless direct torque control of induction motors used in electric vehicle,” IEEE, Trans. Energy Conversion, Vol. 18, No. 1, Mar. 2003.

3.
J. Faiz, S.H. Hossieni, M. Ghaneei, A. Keyhani, A.B. Proca, “Direct torque control of induction motors for electric propulsion systems,” Electric Power System Research, Vol. 51, pp. 95-101, Aug. 1999. crossref(new window)

4.
K. Jezernik, “Speed sensorless torque control of induction motor for EV’s,” Proc. Workshop on Advanced Motion Control, pp. 236-241, 2002.

5.
M.A. Rahman, R. Qin, “A permanent magnet hysteresis hybrid synchronous motor for electric vehicles,” IEEE Trans. Ind. Electron. Vol. 44, No. 1, pp. 46-53, Feb. 1997. crossref(new window)

6.
W. Shihua, S. Liwei, C. Shumei, “Study on improving the performance of permanent magnet wheel motor for the electric vehicle application,” IEEE, Trans. Magn. Vol. 43, No. 1, Jan. 2007.

7.
A. Bouscaylor, B. Davat, B. de Fornel, B. Fracois, “Multimachine Multiconverter System: application for electromechanical drives,” European Physics Journal – Applied Physics, Vol. 10, No. 2, pp. 131-147, 2000. crossref(new window)

8.
E., Benkhoris F., “Control structures for multimachine multi-converter systems with upstream coupling,” Elsevier, Mathematics and computers in simulation, Vol. 63, pp. 261-270, 2003. crossref(new window)

9.
I. Takahachi and T. Noguchi, “A new quick-response and high-efficiency control strategy of an induction motor,” IEEE Trans. Ind. Applicat., Vol. 22, No. 5, pp. 820-827, 1986. crossref(new window)

10.
T.J. Vyncke, J. A. Melkebeek, and R. K. Boel, “Direct torque control of permanent magnet synchronous motors - an overview,” in conf. Proc. 3rd IEEE Benelux Young Research Symposium in Electrical Power Engineering, No. 28, Ghent, Begium, Apr. 27-28, p.5, 2006.

11.
D. Casadei, G. Serra, A. Tani, “Implementation of direct torque control algorithm for induction motors based on discrt space vector modulation,” IEEE Trans. on Power Electronics. Vol. 15, No. 4, pp. 769-777, July 2000. crossref(new window)

12.
C. French, P. Acarnley, “Direct torque control of permanent magnet drives,” IEEE Trans. Ind. Appl. Vol. 32 No. 5, pp. 1080-1088, Sep./Oct. 1996. crossref(new window)

13.
B. Hredzak, S., Gair, J.F., Eastham, “Elimination of torque pulsations in a direct drive EV wheel motor,” IEEE Trans.actions Magn. Vol. 32, No. 5, pp. 5010-5012, Sep. 1996. crossref(new window)

14.
P. Pragasen, R. Krishnan. “Modeling, Simulation, and Analysis of Permanent Magnets Motor Drives, Part I: The Permanent Magnets Synchronous Motor Drive,” IEEE Transactions on Industry Applications. Vol. 25, No.2, 265-273, 1989. crossref(new window)

15.
D.A.J. Rand, R. Woods, R.M. DELL. “Batteries for electric vehicles,” Research Studies. Press Ltd. 1997.

16.
L.T. Lam, R. Lovey, “Development of ultra-battery for hybrid-electric vehicle applications,” Elservier, Power Sources, Vol. 158, pp. 1140-1148, 2006. crossref(new window)

17.
S. Kandler, C.Y. Wang, “Power and thermal characterization of Lithium-Ion battery pack for hybridelectric vehicles”, Elservier, Power Sources, Vol. 160, pp. 662-673, 2006. crossref(new window)

18.
J. Newan, K.E. Thomas, H. Hafezi, D.R. Wheeler, “Modeling of lithium-ion batteries,” J. Power Source, Vol. 119-121, pp. 838-843, Jun. 2003. crossref(new window)

19.
P.M. Gomadam, J.W. Weidner, R.A. Dougal, R.E. White, “Mathematical modeling of lithium-ion and nickel battery systems,” J. Power Source, Vol. 110, No. 2, pp.267-284, Aug. 2002. crossref(new window)

20.
Cao, Xianqing, Zang, Chunhua, Fan, Liping, “Direct Torque Controlled Drive for Permanent Magnet Synchronous Motor Based on Neural Networks and Multi Fuzzy Controllers,” IEEE International Conference on Robotics and Biomimetics, 2006. ROBIO '06. pp. 197-201, 2006.

21.
M. Vasudevan, R. Arumugam, “New direct torque control scheme of induction motor for electric vehicles,” 5th Asian Control Conference, Vol. 2, 20-23, pp. 1377-1383, 2004.

22.
S. Mir, M. E. Elbuluk and D. S. Zinger, “PI and Fuzzy Estimators for Tuning the stator resistance in direct torque control of induction machines,” IEEE Transactions Power Electronics, Vol. 13, No. 2, pp. 279-287, March, 1998. crossref(new window)

23.
T. Gillespice. “Fundamentals of vehicle dynamics,” Society of Automotive Engineers, ISBN 1-56091-199-9.

24.
Y. Hori, senior member IEEE, “Future vehicles driver by electricity and control research on four wheel motored -UOT electric march II,” IEEE Transactions on Industrial Electronics, Vol. 51, No. 5, pp. 954-962, 2004. crossref(new window)

25.
M. Jalili-Kharaajoo, F. Besharati, “Sliding mode traction control of an electric vehicle with four separate wheel drives,” in Proc. IEEE Conf. Emerging Technol-Factory Autom. (ETFA’03), Vol. 2, pp. 291-296, Sep. 16-19, 2003.

26.
R. Rajamani, Vehicle dynamics and control, ISBN 0-387-26396-9, Springer verlag, New York, 2005.

27.
D. Kim, S. Hwang, H. Kim, “Rear motor control for 4WD hybrid electric vehicle stability,” IEEE Conf. pp. 86-91, 2005.

28.
M. Ouladisine, H. Sheain, L.F. Dridman, H. Noura, “Vehicle parameters estimation and stability enhancement using the principle of sliding mode,” American Control Conference, pp. 5224-5229, 2007.