JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Power Generating Characteristics of Zinc Oxide Nanorods Grown on a Flexible Substrate by a Hydrothermal Method
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Power Generating Characteristics of Zinc Oxide Nanorods Grown on a Flexible Substrate by a Hydrothermal Method
Choi, Jae-Hoon; You, Xueqiu; Kim, Chul; Park, Jung-Il; Pak, James Jung-Ho;
  PDF(new window)
 Abstract
This paper describes the power generating property of hydrothermally grown ZnO nanorods on a flexible polyethersulfone (PES) substrate. The piezoelectric currents generated by the ZnO nanorods were measured when bending the ZnO nanorod by using I-AFM, and the measured piezoelectric currents ranged from 60 to 100 pA. When the PtIr coated tip bends a ZnO nanorod, piezoelectrical asymmetric potential is created on the nanorod surface. The Schottky barrier at the ZnO-metal interface accumulates elecntrons and then release very quickly generating the currents when the tip moves from tensile to compressed part of ZnO nanorod. These ZnO nanorods were grown almost vertically with the length of 300-500 nm and the diameter of 30-60 nm on the Ag/Ti/PES substrate at for 6 hours by hydrothermal method. The metal-semiconductor interface property was evaluated by using a HP 4145B Semiconductor Parameter Analyzer and the piezoelectric effect of the ZnO nanorods were evaluated by using an I-AFM. From the measured I-V characteristics, it was observed that ZnO-Ag and ZnO-Au metal-semiconductor interfaces showed an ohmic and a Schottky contact characteristics, respectively. ANSYS finite element simulation was performed in order to understand the power generation mechanism of the ZnO nanorods under applied external stress theoretically.
 Keywords
Hydrothermal method;I-AFM;Piezoelectric effect;Schottky contact;Zinc oxide;
 Language
English
 Cited by
1.
Electrical properties of cellulose-based carbon fibers investigated using atomic force microscopy, Macromolecular Research, 2014, 22, 9, 996  crossref(new windwow)
2.
Electrical properties of an individual ZnO micro/nanorod, IOP Conference Series: Materials Science and Engineering, 2015, 79, 012030  crossref(new windwow)
 References
1.
U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. -J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices”, Journal of Applied Physics, Vol.98, p.041301, Aug. 2005. crossref(new window)

2.
Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo, and Peidong Yang, “Room-temperature ultraviolet nanowire nanolasers”, Science, Vol.292, No.8, pp.1897-1899, June 2001. crossref(new window)

3.
Yuko Satoh, Shigeo Ohshio, and Hidetoshi Saitoh, “Photoluminescence spectroscopy of highly oriented $Y_2O_3$:Tb crystalline whiskers”, Science and Technology of Advanced Materials, Vol.6, pp.215-218, Nov. 2004. crossref(new window)

4.
Lionel Vayssieres, Karin Keis, Sten-Eric Lindquist, and Anders Hagfeldt, “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO”, Journal of Physical Chemistry B, Vol.105, pp.3350-3352, Mar. 2001. crossref(new window)

5.
Xiangyang Ma, Hui Zhang, Yujie Ji, Jin Xu, and Deren Yang, “Sequential occurrence of ZnO nanopaticles, nanorods, and nanotips during hydrothermal process in a dilute aqueous solution”, Materials Letters, Vol.59, pp.3393-3397, Jul. 2005. crossref(new window)

6.
Jiangtao Hu, TeriI Wang Odom, and charles M. Lieber, “Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes”, Accounts of Chemical Research, Vol.32, No.5, pp.435-445, Sep. 1998. crossref(new window)

7.
Chun Cheng, Ming Lei, Lin Feng, Tai Lun Wong, K. M. Ho, Kwok Kwong Fung, Michael M. T. Loy, Dapeng Yu, and Ning Wang, “High-quality ZnO nanowire arrays directly fabricated from photoresists”, American Chemical Society Nano, Vol.3, No.1, pp.53-58, Dec. 2009.

8.
Jinhui Song, Jun Zhou, and Zhong Lin Wang, “Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment”, Nano Letters, Vol.6, No.8, pp.1656-1662, Jul. 2006. crossref(new window)

9.
Min-Yeol Choi, Dukhyun Choi, Mi-Jin Jin, Insoo Kim, Sang-Hyeob Kim, Jae-Young Choi, Sang Yoon Lee, Jong Min Kim, and Sang-Woo Kim, “Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods”, Advanced Materials, Vol.21, pp.2185-2189, 2009. crossref(new window)

10.
Jaejin Song and Sangwoo Lim, “Effect of seed layer on the growth of ZnO nanorods”, The Journal of Physical Chemistry C, Vol.111, No.2, pp.596-600, Dec. 2006. crossref(new window)

11.
Teng Ma, Min Guo, Mei Zhang, Yanjun Zhang, and Xidong Wang, “Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays”, Nanotechnology, Vol.18, p.035605, Jan. 2007. crossref(new window)

12.
Lori E. Greene, Matt Law, Joshua Goldberger, Franklin Kim, Justin C. Johnson, Yanfeng Zhang, Richard J. Saykally, and Peidong Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays”, Angewandte Chemie International Edition, Vol. 42, pp. 3031-3034, Mar. 2003. crossref(new window)

13.
E. H. Rhoderick and R. H. Williams, Monographs in Electrical and Electronic Engineering (Oxford Science, Oxford), Vol.19, p.48, 1988.

14.
C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, “Size dependence of Young’s modulus in ZnO nanowires”, Physical Review Letters, Vol. 96, p.075505, Feb. 2006. crossref(new window)

15.
Woong Lee, Min-Chang Jeong and Jae-Min Myoung, “Fabrication and application potential of ZnO nanowires grown on GaAs(002) substrates by metal-organic chemical vapour deposition”, Nanotechnology, Vol.15, No.1, pp.254-259, Feb. 2004. crossref(new window)

16.
Yifan Gao, and Zhong Lin Wang, “Equilibrium Potential of Free Charge Carriers in a Bent Piezoelectric Semiconductive Nanowire”, Nano Letters, Vol. 9, pp.1103-1110, Mar. 2009. crossref(new window)