JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A High-Speed Single Crystal Silicon AFM Probe Integrated with PZT Actuator for High-Speed Imaging Applications
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A High-Speed Single Crystal Silicon AFM Probe Integrated with PZT Actuator for High-Speed Imaging Applications
Cho, Il-Joo; Yun, Kwang-Seok; Nam, Hyo-Jin;
  PDF(new window)
 Abstract
A new high speed AFM probe has been proposed and fabricated. The probe is integrated with PZT actuated cantilever realized in bulk silicon wafer using heavily boron doped silicon as an etch stop layer. The cantilever thickness can be accurately controlled by the boron diffusion process. Thick SCS cantilever and integrated PZT actuator make it possible to be operated at high speed for fast imaging. The resonant frequency of the fabricated probe is 92.9 kHz and the maximum deflection is 5.3 at 3 V. The fabricated probe successfully measured the surface of standard sample in an AFM system at the scan speed of 600/sec.
 Keywords
AFM;Probe;PZT;Actuator;Boron;Cantilever;Bio imaging;
 Language
English
 Cited by
1.
Electrical Properties of Lead-free$(1-x)(Na_{0.5}K_{0.5})NbO_{3}-xBa(Zr_{0.52}Ti_{0.48})O_{3}$Ceramics,;;;;;

Electronic Materials Letters, 2011. vol.7. 3, pp.201-204 crossref(new window)
2.
Piezoelectric and Dielectric Properties of $(Na_{0.44}K_{0.52})Nb_{0.84}O_{3}-Li_{0.04}(Sb_{0.06}Ta_{0.1})O_{3}$ Ceramics with Sintering Temperature,;;

Electronic Materials Letters, 2011. vol.7. 3, pp.205-208 crossref(new window)
3.
Electrical properties of (Na,K)$NbO_3-BaTiO_3$ ceramics fabricated by a physicochemical method,;;

Journal of Ceramic Processing Research, 2011. vol.12. 4, pp.416-419
4.
Piezoelectric properties of lead-free ${(1-x)(Na_{0.5}K_{0.5})NbO_{3}-xLi(Sb_{0.17}Ta_{0.83})O_{3}}$ ceramics,;;;;;

Journal of Ceramic Processing Research, 2011. vol.12. 3, pp.332-335
5.
Electrical Properties of Lead-Free $0.98(Na_{0.5}K_{0.5}Li_{0.1})NbO_{3}-0.02Ba(Zr_{0.52}Ti_{0.48})O_{3}$ Ceramics by Sintering Temperature,;;;

Electronic Materials Letters, 2012. vol.8. 3, pp.289-293 crossref(new window)
6.
Ferroelectric and Piezoelectric Properties of Lead-Free $(0.98Na_{0.5}K_{0.5})NbO_3-0.02Ba(Zr_{0.52}Ti_{0.48})O_3$ Ceramics with Various Sintering Temperatures,;;;;;

Electronic Materials Letters, 2012. vol.8. 2, pp.147-150 crossref(new window)
7.
Electrical Properties of Lead-free $0.98(Na_{0.5)}K_{0.5}Li_{x})NbO_{3}-0.02Ba(Zr_{0.52}Ti_{0.48})O_{3}$ Ceramics,;;;;;;

Electronic Materials Letters, 2012. vol.8. 1, pp.43-45 crossref(new window)
8.
Dielectric and Piezoelectric Properties of $0.95(Na_{0.5}K_{0.5})NbO_3-0.05CaTiO_3$ Ceramics with $Ag_2O$ Contents,;;;;;;;;;

Electronic Materials Letters, 2012. vol.8. 6, pp.577-580 crossref(new window)
9.
Effect of Sintering Temperatures on the Piezoelectric and Dielectric Properties of $0.98(Na_{0.5}K_{0.5})NbO_3-0.02(Ba_{0.5}Ca_{0.5})TiO_3$ Ceramics,;;;;;;;

Electronic Materials Letters, 2013. vol.9. 2, pp.237-240 crossref(new window)
10.
Effect of sintering temperatures on electrical properties of $0.95(Na_{0.5}K_{0.5})NbO_3-0.05(Ba_{0.5}Sr_{0.5})(Ti_{0.95}Sn_{0.05})O_3$ lead-free ceramics,;;;;;;;;

Journal of Ceramic Processing Research, 2014. vol.15. 1, pp.26-29
11.
Densification Mechanism of BaTiO3 Films on Cu Substrates Fabricated by Aerosol Deposition,;;;;

Electronic Materials Letters, 2015. vol.11. 3, pp.388-397 crossref(new window)
1.
Piezoelectric Properties of ZnO-Doped 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ta0.48)O3Ceramics, Integrated Ferroelectrics, 2012, 140, 1, 140  crossref(new windwow)
2.
Effect of various sintering aids on the piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3–0.02Li0.04(Sb0.06Ta0.1)O3 ceramics, Materials Research Bulletin, 2014, 58, 218  crossref(new windwow)
3.
Dielectric and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 ceramics with Ag2O contents, Electronic Materials Letters, 2012, 8, 6, 577  crossref(new windwow)
4.
Piezoelectric and dielectric properties of (Na0.44K0.52)Nb0.84O3-Li0.04(Sb0.06Ta0.1)O3 ceramics with sintering temperature, Electronic Materials Letters, 2011, 7, 3, 205  crossref(new windwow)
5.
Electrical and Structural Properties of 0.98(Na0.5K0.5)NbO3–0.02Ba(Zr0.52Ti0.48)O3Ceramics with CuO Content, Japanese Journal of Applied Physics, 2012, 51, 7R, 075802  crossref(new windwow)
6.
Electrical properties of lead-free 0.98(Na0.5K0.5Lix)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics, Electronic Materials Letters, 2012, 8, 1, 43  crossref(new windwow)
7.
Effect of sintering temperatures on the piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3-0.02(Ba0.5Ca0.5)TiO3 ceramics, Electronic Materials Letters, 2013, 9, 2, 237  crossref(new windwow)
8.
Electrical properties of lead-free 0.98(Na0.5K0.5Li0.1)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics by sintering temperature, Electronic Materials Letters, 2012, 8, 3, 289  crossref(new windwow)
9.
Electrical and structural properties of 0.98(Na0.5K0.5)NbO3-0.02LiSbO3 ceramics with ZnO content, Journal of the Korean Physical Society, 2012, 60, 7, 1114  crossref(new windwow)
10.
Densification mechanism of BaTiO3 films on Cu substrates fabricated by aerosol deposition, Electronic Materials Letters, 2015, 11, 3, 388  crossref(new windwow)
11.
Electrical properties of lead-free (1-x)(Na0.5K0.5)NbO3-xBa(Zr0.52Ti0.48)O3ceramics, Electronic Materials Letters, 2011, 7, 3, 201  crossref(new windwow)
12.
Ferroelectric and piezoelectric properties of lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics with various sintering temperatures, Electronic Materials Letters, 2012, 8, 2, 147  crossref(new windwow)
13.
Piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3–0.02Ba(ZrxTi(1−x))O3 ceramics, Materials Research Bulletin, 2012, 47, 10, 2863  crossref(new windwow)
 References
1.
B. Chui, T. Stowe, Y. Ju, K. Goodson, T. Kenny, H. Mamin, B. Terris, R. Ried, and D. Rugar, "Lowstiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high-density AFM thermomechanical data storage", Journal of Microelectromechanical Systems, Vol. 7, p. 69, 1998. crossref(new window)

2.
C. Mart n, G. Rius, X. Borrise, and F. Perez-Murano, "Nanolithography on thin layers of PMMA using atomic force microscopy", Nanotechnology, Vol. 16, pp. 1016-1022, 2005. crossref(new window)

3.
S. Sen, S. Subramanian and D. E. Discher, "Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments", Biophysical Journal, Vol. 89, issue 5, pp. 3203-3213, 2005. crossref(new window)

4.
D. Fotiadis, S. Scheuring, S. A. Muller, A. Engel and D. J. Muller, "Imaging and manipulation of biological structures with the AFM", Micron, Vol. 33, issue 4, pp. 385-397, 2005.

5.
Y. Kim, H. Nam, S. Cho, J. Hong, D. Kim, and J. Bu, "PZT cantilever array integrated with piezoresistor sensor for high speed parallel operation of AFM," Sensors & Actuators: A. Physical, Vol. 103, pp. 122-129, 2003. crossref(new window)

6.
T. Sulchek, R. Hsieh, J. Adams, G. Yaralioglu, S. Minne, C. Quate, J. Cleveland, A. Atalar, and D. Adderton, "High-speed tapping mode imaging with active Q control for atomic force microscopy," Applied Physics Letters, Vol. 76, p. 1473, 2000. crossref(new window)

7.
I. Cho, E. Park, S. Hong, and E. Yoon, "Atomic force microscope probe tips using heavily boron-doped silicon cantilevers realized in a < 110> bulk silicon wafer," Jpn. J. Appl. Phys, Vol. 39, pp. 7103-7107, 2000. crossref(new window)