Advanced SearchSearch Tips
Parameterized Simulation Program with Integrated Circuit Emphasis Modeling of Two-level Microbolometer
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Parameterized Simulation Program with Integrated Circuit Emphasis Modeling of Two-level Microbolometer
Han, Seung-Oh; Chun, Chang-Hwan; Han, Chang-Suk; Park, Seung-Man;
  PDF(new window)
This paper presents a parameterized simulation program with integrated circuit emphasis (SPICE) model of a two-level microbolometer based on negative-temperature-coefficient thin films, such as vanadium oxide or amorphous silicon. The proposed modeling begins from the electric-thermal analogy and is realized on the SPICE modeling environment. The model consists of parametric components whose parameters are material properties and physical dimensions, and can be used for the fast design study, as well as for the co-design with the readout integrated circuit. The developed model was verified by comparing the obtained results with those from finite element method simulations for three design cases. The thermal conductance and the thermal capacity, key performance parameters of a microbolometer, showed the average difference of only 4.77% and 8.65%, respectively.
 Cited by
System-level simulation of microbolometer and read-out integrated circuit, Science China Technological Sciences, 2015, 58, 5, 907  crossref(new windwow)
Thermal Characterization of Individual Pixels in Microbolometer Image Sensors by Thermoreflectance Microscopy, JSTS:Journal of Semiconductor Technology and Science, 2015, 15, 5, 533  crossref(new windwow)
High-uniformity post-CMOS uncooled microbolometer focal plane array integrated with active matrix circuit, Sensors and Actuators A: Physical, 2014, 211, 138  crossref(new windwow)
Uncooled microbolometer system-level co-simulation using finite element analysis method and intellectual property core, Microsystem Technologies, 2016  crossref(new windwow)
A. Rogalski, “Infrared detectors: status and trends,” Progress in Quantum Electronics, Vol. 27, pp. 59-210, 2003. crossref(new window)

H.-K. Lee, J.-B. Yoon, E. Yoon, S.-B. Ju, Y.-J. Yong, W. Lee, and S.-G. Kim, “A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures,” IEEE Trans. Elec. Dev., Vol. 46, pp. 1489-1491, 1999. crossref(new window)

C. Chen, X. Yi, J. Zhang, and X. Zhao, “Linear uncooled microbolometer array based on VOx thin films,” Infrared Physics & Tech., Vol. 42, pp. 87-90,2001. crossref(new window)

S. Eminoglu, D. S. Tezcan, M. Y. Tanrikulu, and T. Akin, “Low-cost uncooled infrared detectors in CMOS process,” Sensors & Actuators, Vol. A109, pp. 102-113, 2003.

R. A. Wood, “High performance infrared thermal imaging with monolithic silicon focal planes operating at room temperature,” in Proceedings of IEEE IEDM, 1993.

S. Han, C. Chun, C. Han, and S. Park, “Coupled physics analyses of VOx-based, three-level microbolomter,” Electron. Mater. Lett., Vol. 5, pp. 63-65, 2009. crossref(new window)

J. A. Potkay, G. R. Lambertus, R. D. Sacks, and K. D. Wise, “A low-power pressure- and temperatureprogrammable GC column,” in Proceedings of Solid- State Sensor, Actuator and Microsystem Workshop, 2006.

B. E. Cole, R. E. Higashi, and R. A. Wood, “Monolithic arrays of micromachined pixels for infrared applications,” in Proceedings of IEEE IEDM, 1998.

P. W. Kruse and D. D. Skatrud, Uncooled infrared imaging arrays and systems: Academic Press, 1997.

H. H. Jones, S. Aslam, and B. Lakew, “Bolometer simulation using SPICE,” in Proceedings of Int. Thermal Detectors Workshop, 2004.

D. Yvon and V. Sushkov, “Low Noise Cryogenic Electronics: Preamplifier configurations with feedback on the bolometer,” IEEE Trans. Nuclear Sci., Vol. 47, pp. 428-437, 2000. crossref(new window)

J. Shie, Y. Chen, M. Ou-Yang, and B. Chou, “Characterization and modeling of metal-film microbolometer,” J. MEMS, Vol. 5, pp. 298-306, 1996. crossref(new window)

P. Capper and C. T. Elliott, Infrared detectors and emitters: materials and devices, Kluwer Academic Publishers, 2001.