JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Harmonic Elimination in Three-Phase Voltage Source Inverters by Particle Swarm Optimization
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Harmonic Elimination in Three-Phase Voltage Source Inverters by Particle Swarm Optimization
Azab, Mohamed;
  PDF(new window)
 Abstract
This paper presents accurate solutions for nonlinear transcendental equations of the selective harmonic elimination technique used in three-phase PWM inverters feeding the induction motor by particle swarm optimization (PSO). With the proposed approach, the required switching angles are computed efficiently to eliminate low order harmonics up to the from the inverter voltage waveform, whereas the magnitude of the fundamental component is controlled to the desired value. A set of solutions and the evaluation of the proposed method are presented. The obtained results prove that the algorithm converges to a precise solution after several iterations. The salient contribution of the paper is the application of the particle swarm algorithm to attenuate successfully any undesired loworder harmonics from the inverter output voltage. The current paper demonstrates that the PSO is a promising approach to control the operation of a three-phase voltage source inverter with a selective harmonic elimination strategy to be applied in induction motor drives.
 Keywords
Voltage source inverters;Harmonic elimination;Particle swarm optimization;Induction motor drives;
 Language
English
 Cited by
1.
Training HMM Structure and Parameters with Genetic Algorithm and Harmony Search Algorithm,;;;;

Journal of Electrical Engineering and Technology, 2012. vol.7. 1, pp.109-114 crossref(new window)
2.
A Ripple Rejection Inherited RPWM for VSI Working with Fluctuating DC Link Voltage,;;;

Journal of Electrical Engineering and Technology, 2015. vol.10. 5, pp.2018-2030 crossref(new window)
1.
Training HMM Structure and Parameters with Genetic Algorithm and Harmony Search Algorithm, Journal of Electrical Engineering and Technology, 2012, 7, 1, 109  crossref(new windwow)
2.
A Particle Swarm Optimization Algorithm With Novel Expected Fitness Evaluation for Robust Optimization Problems, IEEE Transactions on Magnetics, 2012, 48, 2, 331  crossref(new windwow)
3.
Implementation of ANN-based Selective Harmonic Elimination PWM using Hybrid Genetic Algorithm-based optimization, Measurement, 2016, 85, 32  crossref(new windwow)
4.
Robust optimization approach to production system with failure in rework and breakdown under uncertainty: evolutionary methods, Assembly Automation, 2015, 35, 1, 81  crossref(new windwow)
5.
Transformer Parameters Estimation From Nameplate Data Using Evolutionary Programming Techniques, IEEE Transactions on Power Delivery, 2014, 29, 5, 2118  crossref(new windwow)
6.
A Ripple Rejection Inherited RPWM for VSI Working with Fluctuating DC Link Voltage, Journal of Electrical Engineering and Technology, 2015, 10, 5, 2018  crossref(new windwow)
7.
Selective elimination of harmonic contents in an uninterruptible power supply: an enhanced adaptive hybrid technique, IET Power Electronics, 2012, 5, 8, 1527  crossref(new windwow)
 References
1.
F. G. Turnbull, “Selected harmonic reduction in static dc-ac inverters,” IEEE Trans. Commun. Electron., vol. 83, pp. 374-378, 1964. crossref(new window)

2.
H. S. Patel and R. G. Hoft, “Generalized harmonic elimination and voltage control in thyristor inverters: Part I-harmonic elimination,” IEEE Trans. Ind. Appl., vol. IA-9, no. 3, pp. 310-317, May/Jun. 1973. crossref(new window)

3.
H. S. Patel and R. G. Hoft, “Generalized techniques of harmonic elimination and voltage control in thyristor inverters: part II-voltage control techniques,” IEEE Trans. Ind. Appl., vol. IA-10, pp. 666-673, Sep/Oct 1974. crossref(new window)

4.
J. R. Wells, et. al., “Modulation-Based Harmonic Elimination,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 336-340, Jan 2007. crossref(new window)

5.
V. G. Agelidis, et. al., “Multiple Sets of Solutions for Harmonic Elimination PWM Bipolar Waveforms: Analysis and Experimental Verification,” IEEE Trans. Power Electron., vol. 21, no. 2, pp.415-421, March 2006. crossref(new window)

6.
R. A. Jabr, “Solution trajectories of the harmonicelimination problem,” Proc. Inst. Electr. Eng.-Electric Power Applications, vol. 153, no. 1, pp. 97-104, Jan. 1, 2006. crossref(new window)

7.
J. N. Chiasson, et. al., “A complete solution to the harmonic elimination problem,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 491-499, Mar. 2004. crossref(new window)

8.
F. Swift and A. Kamberis, “A new Walsh domain technique of harmonic elimination and voltage control in pulse-width modulated inverters,” IEEE Trans. Power Electron., vol. 8, no. 2, pp. 170-185, Apr. 1993. crossref(new window)

9.
T.-J. Lang, et. al., “Inverter harmonic reduction using Walsh function harmonic elimination method,” IEEE Trans. Power Electron., vol. 12, no. 6, pp. 971-982, Nov. 1997.

10.
A. I. Maswood, et. al., “A Flexible Way to Generate PWM-SHE Switching Pattern using Genetic Algorithm,” IEEE Applied Power Electronics (APEC) Conf. Proc., Anaheim, California, USA, Vol. 2, 2001, pp. 1130-1134.

11.
A. Sayyah, et. al., “Optimization of THD and Suppressing Certain Order Harmonics in PWM Inverters using Genetic Algorithms,” Proc. of IEEE International Symposium on Intelligent Control, Germany, Oct. 2006, pp. 874-879.

12.
K. Sundareswaran, et. al., “Inverter Harmonic Elimination Through a Colony of Continuously Exploring Ants,” IEEE Trans. Ind. Elect., vol. 54, no. 5, pp. 2558-2565, October 2007. crossref(new window)

13.
Mohamed azab, “Particle Swarm Optimization-Based Solutions For Selective Harmonic Elimination In Single-Phase PWM Inverters”, International Journal of Power electronics, Vol. 2, No. 2, 2010, Inderscience Enterprises Ltd- UK.

14.
M. Dorigo, et. al., “Ant system: Optimization by a colony of cooperation agents,” IEEE Trans. Syst., Man, Cybern. B, Cybern., Vol. 26, no. 1, pp. 29-41, Feb. 1996. crossref(new window)

15.
M. Dorigo, et. al., “Special section on ant colony optimization,” IEEE Transactions on Evolutionary Computation, August 2002.

16.
J. Kennedy , R. Eberhart , “Particle Swarm Optimization,” Proceedings of IEEE International Conference on Neural Networks (ICNN'95), Vol. IV, pp.1942-1948, 1995.

17.
Mohamed Azab, "Global maximum power point tracking for partially shaded PV arrays using particle swarm optimization", International Journal of Renewable Energy Technology, vol. 1, no. 2, pp. 211-235, Inderscience Enterprises Ltd- UK , 2009. crossref(new window)

18.
J. Hereford, M. Siebold, "Multi-robot search using a physically-embedded particle swarm optimization", International Journal of Computational Intelligence Research, Vol. 4, No. 2, pp.197–209, 2008.