JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Measurement of III-V Compound Semiconductor Characteristics using the Contactless Electroreflectance Method
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Measurement of III-V Compound Semiconductor Characteristics using the Contactless Electroreflectance Method
Yu, Jae-In; Choi, Soon-Don; Chang, Ho-Gyeong;
  PDF(new window)
 Abstract
The electromodulation methods of photoreflectanceand the related technique of contactless electroreflectance(CER) are valuable tools in the evaluation of important device parameters for structures such as heterojunction bipolar transistors, pseudomorphic high electron mobility transistors, and quantum dots(QDs). CER is a very general principle of experimental physics. Instead of measuring the optical reflectance of the material, the derivative with respect to a modulating electric field is evaluated. This procedure generates sharp, differential-like spectra in the region of interband (intersubband) transitions. We conduct electric-optical studies of both GaAs layers and InAs selfassembled QDs grown by molecular beam epitaxy. Strong GaAsbandgap energy is measured in both structures. In the case of lnAs monolayers in GaAs matrices, the strong GaAsbandgap energy is caused by the lateral quantum confinement.
 Keywords
InAs;QD;CER;GaAs;Semiconductor;
 Language
English
 Cited by
1.
SiGe Synthesis by Ge Ion Implantation, Japanese Journal of Applied Physics, 2012, 51, 9S2, 09MF03  crossref(new windwow)
 References
1.
G.P. Kothiyal, S. Hong, N. Debbar, P.K. Bhattacharya, J. Singh, Appl. Phys. Lett. 51 (1987), p1091. crossref(new window)

2.
D.J. Aren, K. Deneffe, C. Van Hoof, J. De Broeck, G. Borfhs, In band structure engineering of semiconductor microstructure, in: R.A. Abram, M. Jacos (Eds.), NATO ARW Series, vol. 189, Plenum, New York, 1988.

3.
S.H. Pan, H. Shen, Z. Hang, F.H. Pollak, A.P. Roth, D. Morris, Phys. Rev. B 38 (1988), p 3375. crossref(new window)

4.
B.G. Orr, D. Kessler. C.W. Snyder, L. Sander, Europhys. Len. 19 (1992), p33. crossref(new window)

5.
D. Leonard, K. Pond, P.M. Petroft, Phys. Rev. B 50 (1994), p11687. crossref(new window)

6.
S.P. DenBaars, C.M. Reaves, V. Bressler-Hill, S. Varma, W.H. Weinberg, P.M. Petroff, J. Cryst. Growth 145(1994), p 721. crossref(new window)

7.
R.L. Harper Jr., R.N. Bicknell, D.K. Blanks, N.C. Giles, J.F. Schetzina, Y.R. Lee, A.K. Ramdas, J. Appl. Phys. 65 (1989), p624. crossref(new window)

8.
A. Poliment, A. Patane, M. Henini, L. Eaves, P.C. Main, Phys. Rev. B 59 (1999), p5064. crossref(new window)

9.
A.E. Zhukov, A.R. Kovsh, N.A. Maleev, S.S. Mikhrin, V.M. Ustinov, M.V. Maximov, Z.I. Alferov, N.N. Ledentsov, D. Bimberg,Appl. Phys. Lett. 75 (1999), p1926. crossref(new window)

10.
K.S. Stevens, M. Kinninburgh and R. Beresford, Appl. Phys. Lett. 66 (1995), p3518. crossref(new window)

11.
J.M. Gerard, J.B. Genin, J. Lefebvre, J.M. Moison, N. Lebouche and F. Barthe, J. Cryst. Growth 150 (1995), p351. crossref(new window)

12.
M. Zachau, P. Helgesen, F. Koch, D. Grutzmacher, R. Meyer and P. Balk, Sernicond. Sci. Technol. 3 (1988), p 1029. crossref(new window)