JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of oxygen on the threshold voltage of a-IGZO TFT
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of oxygen on the threshold voltage of a-IGZO TFT
Chong, Eu-Gene; Chun, Yoon-Soo; Kim, Seung-Han; Lee, Sang-Yeol;
  PDF(new window)
 Abstract
Thin-film transistors (TFTs) are fabricated using an amorphous indium gallium zinc oxide (a-IGZO) channel layer by rf-magnetron sputtering. Oxygen partial pressure significantly changed the transfer characteristics of a-IGZO TFTs. Measurements performed on a-IGZO TFT show the change of threshold voltage in the transistor channel layer and electrical properties with varying ratios. The device performance is significantly affected by adjusting the ratio. This ratio is closely related with the modulation generation by reducing the localized trapping carriers and defect centers at the interface or in the channel layer.
 Keywords
a-IGZO;Oxide TFT; partial pressure;Threshold voltage;
 Language
English
 Cited by
1.
Non-monotonic Size Dependence of Electron Mobility in Indium Oxide Nanocrystals Thin Film Transistor,;;

Bulletin of the Korean Chemical Society, 2014. vol.35. 8, pp.2505-2511 crossref(new window)
2.
Effect of Post Annealing in Oxygen Ambient on the Characteristics of Indium Gallium Zinc Oxide Thin Film Transistors,;

한국전기전자재료학회논문지, 2014. vol.27. 10, pp.648-652 crossref(new window)
3.
PLD법으로 제작한 비정질 IGZO 박막 트랜지스터의 UV광 조사 연구,서상진;조진형;김철환;장윤형;

새물리, 2014. vol.64. 8, pp.753-759 crossref(new window)
4.
Effect of Sputtering Power on the Change of Total Interfacial Trap States of SiZnSnO Thin Film Transistor,;;

Transactions on Electrical and Electronic Materials, 2014. vol.15. 6, pp.328-332 crossref(new window)
5.
Performance of Solution Processed Zn-Sn-O Thin-film Transistors Depending on Annealing Conditions,;;;

Transactions on Electrical and Electronic Materials, 2015. vol.16. 2, pp.62-64 crossref(new window)
6.
Effect of Annealing Time on Electrical Performance of SiZnSnO Thin Film Transistor Fabricated by RF Magnetron Sputtering,;;

Transactions on Electrical and Electronic Materials, 2015. vol.16. 2, pp.99-102 crossref(new window)
1.
A study on the electrical and optical characteristics of IGZO films, Journal of Materials Science: Materials in Electronics, 2014, 25, 7, 3077  crossref(new windwow)
2.
Facile Encapsulation of Oxide based Thin Film Transistors by Atomic Layer Deposition based on Ozone, Advanced Materials, 2013, 25, 20, 2821  crossref(new windwow)
3.
Full swing depletion-load inverter with amorphous SiZnSnO thin film transistors, physica status solidi (a), 2016  crossref(new windwow)
4.
Non-monotonic Size Dependence of Electron Mobility in Indium Oxide Nanocrystals Thin Film Transistor, Bulletin of the Korean Chemical Society, 2014, 35, 8, 2505  crossref(new windwow)
5.
Effect of Annealing Time on Electrical Performance of SiZnSnO Thin Film Transistor Fabricated by RF Magnetron Sputtering, Transactions on Electrical and Electronic Materials, 2015, 16, 2, 99  crossref(new windwow)
6.
Top-gate zinc tin oxide thin-film transistors with high bias and environmental stress stability, Applied Physics Letters, 2014, 104, 25, 251603  crossref(new windwow)
7.
Effect of Sputtering Power on the Change of Total Interfacial Trap States of SiZnSnO Thin Film Transistor, Transactions on Electrical and Electronic Materials, 2014, 15, 6, 328  crossref(new windwow)
8.
Effects of working pressure on morphology, structural, electrical and optical properties of a-InGaZnO thin films, Materials Research Bulletin, 2012, 47, 10, 2911  crossref(new windwow)
9.
Effect of Post Annealing in Oxygen Ambient on the Characteristics of Indium Gallium Zinc Oxide Thin Film Transistors, Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2014, 27, 10, 648  crossref(new windwow)
10.
Temperature Effects on a-IGZO Thin Film Transistors Using HfO2Gate Dielectric Material, Journal of Nanomaterials, 2014, 2014, 1  crossref(new windwow)
11.
Performance of Solution Processed Zn-Sn-O Thin-film Transistors Depending on Annealing Conditions, Transactions on Electrical and Electronic Materials, 2015, 16, 2, 62  crossref(new windwow)
12.
Blue shift in the optical bandgap of tin oxide thin films by controlling oxygen-to-argon gas flow ratio, Functional Materials Letters, 2015, 08, 01, 1550014  crossref(new windwow)
13.
Effect of O2 plasma immersion on electrical properties and transistor performance of indium gallium zinc oxide thin films, Thin Solid Films, 2013, 545, 533  crossref(new windwow)
 References
1.
E. G. Chong, K. C. Jo, S. Y. Lee, Appl. Phys. Lett. 96, (2010), 037015.

2.
P. Barquinha, A. Pimentel, A. Marques, L. Pereira, R. Martins, and E. Fortunato, J. Non-Cryst. Solids, 352, (2006), 1749. crossref(new window)

3.
R. Martins, et al, J. Appl. Phys. 96, (2004), 1398. crossref(new window)

4.
S. H. Jeong, B. N Park, D. G Yoo, J. H Boo, and D. G Jung, J. Korean Phys. Soc. 50, (2007), 3.

5.
K. W. Kim, P. C. Debnath, D. H. Park, S. S. Kim, and S. Y. Lee, Appl. Phys. Lett. 96, (2010), 083103. crossref(new window)

6.
J. W. Kim, H. S. Kang, and S.Y. Lee, KIEE J. Electr. Eng. Technol. 1, (2006), 1, 98-100. crossref(new window)

7.
B. S. Kim, D. E. Kim, G. C. Choi, J. W. Park, B. J. Lee and Y. S. Kwon, KIEE J. Electr. Eng. Technol. 4, (2009), 3, 418-422. crossref(new window)

8.
E. Fortunato, A. Pimentel, A. Goncalves, A. Marques, R. Martins, Thin Solid Films. 502, (2006), 104. crossref(new window)

9.
Y. K. Moon, S. Lee, J. W. Park, D. H. Kim, J. H. Lee and C. O Jeong, J. Korean Phys. Soc. 54, (2009), 1. crossref(new window)

10.
C. H. Jung, D. J. Kim, Y. K. Kang, and D. H. Yoon, Jpn. J. Appl. Phys. 48, (2009).

11.
K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature (London). 432, (2004), 488. crossref(new window)

12.
P. Barquinha, L. Pereira, G. Gonçalves, R. Martins, and E. Fortunato, J. Electrochemical Society. 156, (2009), H161. crossref(new window)

13.
J. H. Jeong, H. W. Yang, J. S. Park, J. K. Jeong, Y. G Mo, H. D. Kim, J. Song, and C. S. Hwang, Electrochemical and Solid State Lett. 11, (2008), H157. crossref(new window)

14.
H. Hosono, K. Nomura, Y. Ogo, T. Uruga, T. Kamiya, J. Non-Cryst. Solids. 354, (2008), 2796. crossref(new window)

15.
J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and C. J. Kim, Appl. Phys. Lett. 93, (2008), 033513. crossref(new window)

16.
P. T. Liu, Y. T. Chou, and L. F. Teng, Appl. Phys. Lett. 95, 233504, 2009. crossref(new window)

17.
C. Kilic¸ and A. Zunger, Appl. Phys. Lett., 81, 73, 2002. crossref(new window)

18.
C. G. Van de Walle, Phys. Rev. Lett., 85, 1012, 2000. crossref(new window)

19.
C. J. Park, Y. W. Kim, Y. J. Cho, S. M. Bobade and D. K. Choi, J. Korean Phys Soc. 55, (2009), 5. crossref(new window)

20.
Y. Orikasa, M. Hayashi, and S. Muranaka, J. Appl. Phys. 103, (2008), 113703. crossref(new window)

21.
Ibrahim Abdel-Motaleb, Neeraj Shetty, Kevin Leedy, and Rebecca Cortez, J. Appl. Phys. 109 (2011) 014503. crossref(new window)

22.
B. Theys, V. Sallet, F. Jomard, A. Lusson, J.-F. Rommelue're, and Z. Teukam, J. Appl. Phys. 91, (2002), 3922. crossref(new window)

23.
N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, Appl. Phys. Lett. 80, (2002), 2869. crossref(new window)

24.
E. Chong, Y. S. Chun, and S. Y. Lee, Electrochem. Solid-State Lett., 14, (2011) H96. crossref(new window)