JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Study on Optimum Spark Plasma Sintering Conditions for Conductive SiC-ZrB2 Composites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Study on Optimum Spark Plasma Sintering Conditions for Conductive SiC-ZrB2 Composites
Lee, Jung-Hoon; Ju, Jin-Young; Kim, Cheol-Ho; Shin, Yong-Deok;
  PDF(new window)
 Abstract
Conductive SiC- composites were produced by subjecting a 40:60 (vol%) mixture of zirconium diboride (ZrB2) powder and -silicon carbide (SiC) matrix to spark plasma sintering (SPS). Sintering was carried out for 5 min in an argon atmosphere at a uniaxial pressure and temperature of 50 MPa and , respectively. The composite sintered at a heating speed of /min and an on/off pulse sequence of 12:2 was denoted as SZ12L. Composites SZ12H, SZ48H, and SZ10H were obtained by sintering at a heating speed of /min and at on/off pulse sequences of 12:2, 48:8, and 10:9, respectively. The physical, electrical, and mechanical properties of the SiC- composites were examined and thermal image analysis of the composites was performed. The apparent porosities of SZ12L, SZ12H, SZ48H, and SZ10H were 13.35%, 0.60%, 12.28%, and 9.75%, respectively. At room temperature, SZ12L had the lowest flexural strength (286.90 MPa), whereas SZ12H had the highest flexural strength (1011.34 MPa). Between room temperature and , the SiC- composites had a positive temperature coefficient of resistance (PTCR) and linear V-I characteristics. SZ12H had the lowest PTCR and highest electrical resistivity among all the composites. The optimum SPS conditions for the production of energy-friendly SiC- composites are as follows: 1) an argon atmosphere, 2) a constant pressure of 50 MPa throughout the sintering process, 3) an on/off pulse sequence of 12:2 (pulse duration: 2.78 ms), and 4) a final sintering temperature of at a speed of /min and sintering for 5 min at .
 Keywords
Spark plasma sintering (SPS);Heating speed;Positive temperature coefficient of resistance (PTCR);V-I characteristics;Energy-friendly composite;Ohmic-contact electrode material;
 Language
English
 Cited by
1.
컴퓨터 시뮬레이션에 의한 SPS의 몰드크기에 따른 SiC-ZrB2 복합체의 소결특성 연구,신용덕;이정훈;진범수;강명균;

전기학회논문지, 2012. vol.61. 7, pp.988-991 crossref(new window)
2.
소결방법에 따른 다공성 티타늄 임플란트의 기계적 특성,김영훈;

대한치과기공학회지, 2012. vol.34. 3, pp.221-226 crossref(new window)
3.
Effects of SPS Mold on the Properties of Sintered and Simulated SiC-ZrB2 Composites,;;;;;;;

Journal of Electrical Engineering and Technology, 2013. vol.8. 6, pp.1474-1480 crossref(new window)
1.
A Study on Sintering Properties of a SiC-ZrB2Composite According to Mold Size of SPS Through Computer Simulation, The Transactions of The Korean Institute of Electrical Engineers, 2012, 61, 7, 988  crossref(new windwow)
2.
Mechanical property of porous Ti implants by sintering method, Journal of Korean Acedemy of Dental Technology, 2012, 34, 3, 221  crossref(new windwow)
3.
Effects of SPS Mold on the Properties of Sintered and Simulated SiC-ZrB2Composites, Journal of Electrical Engineering and Technology, 2013, 8, 6, 1474  crossref(new windwow)
4.
Sintering properties of zirconia-based ceramic composite, Materials Research Innovations, 2014, 18, sup6, S6-105  crossref(new windwow)
 References
1.
I. Akin, M. Hotta, F. C. Sahin, O. Yucel, G. Goller, T. Goto, "Microstructure and densification of ZrB2-SiC composites prepared by spark plasma sintering" Journal of the European Ceramic Society, 29, pp. 2379-2385, 2009. crossref(new window)

2.
J. W. Zimmermann, G. E. Hilmas, W. G. Fahrenholtz, F. Monteverde, A. Bellosi, "Fabrication and properties of reactively hot-pressed $ZrB_2-SiC$ ceramics" Journal of the European Ceramic Society, 27, pp. 2279-2736, 2007.

3.
A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas, "Reactive hot pressing of zirconium diboride" Journal of the European Ceramic Society, 29, pp. 3401-3408, 2009. crossref(new window)

4.
S.-Q. Guo, T. Nishimura, Y. Kagawa, J.-M. Yang, "Spark plasma sintering of zirconium diborides" J. Am. Ceram. Soc., 91[9], pp. 2848-2855, 2008. crossref(new window)

5.
A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas, D. T. Ellerby, "High-strength zirconium diboridebased ceramics" J. Am. Ceram. Soc., 87[6], pp.1170-1172, 2004. crossref(new window)

6.
W. G. Fahrenholtz, G. E. Hilmas, A. L. Chamberlain, W. Zimmrmann, "Processing and characterization of ZrB2-based ultra-high temperature monolithic and fibrous monolithic ceramics" J. Mater. Sci., 39[19], pp. 5951-5957, 2004. crossref(new window)

7.
F. Monteverde, A. Bellosi, "Oxidation of ZrB2-based ceramics in dry air" J. Electrochem. Soc., 150[11], B552-B559, 2003. crossref(new window)

8.
H. Hashiguchi, H. Kimugasa "Electrical resistivity of $\alpha$-SiC ceramics added with NiO" J. Ceram. Soc. Japan, 102[2], pp.160-64, 1994. crossref(new window)

9.
Y. D. Shin, J. Y. Ju, T.H. Ko, J. H. Lee "Effect of in situ YAG on properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites" Trans. KIEE, vol. 57, no. 11, pp. 2015-2022, 2008.

10.
Y. D. Shin, J. Y. Ju, T. H. Ko, "Effects of in situ YAG on properties of the pressureless-sintered SiC-$TiB_2$ electroconductive ceramic composites" Trans. KIEE, vol. 57, no. 5, pp. 808-815, 2008.

11.
Y. D. Shin, J. Y. Ju, "Effect of annealing temperature on microstructure and properties of the pressurelesssintered $SiC-TiB_2$ electroconductive ceramic composites" Trans. KIEE, vol. 55C, no. 10, pp. 467-474, 2006.

12.
Y. D. Shin, J. Y. Ju, T. H. Ko, "Effects of boride on microstructure and properties of the electroconductive ceramic composites of liquid-sintered silicon carbide system" Trans. KIEE, vol. 56C, no. 9, pp.1602-1608, 2007.

13.
J. Y. Ju, C. H. Kim, J. J. Kim, J. H. Lee, H. S. Lee, Y. D. Shin, "The development of an electroconductive $SiC-ZrB_2$ ceramic heater through spark plasma sintering" Journal of Electrical Engineering and Technology KIEE, vol. 4, no. 4, pp. 538-545, 2009. crossref(new window)

14.
Y. D. Shin, W. S. Choi, T. H. Ko, J. H. Lee, J. Y. Ju, "Development of electroconductive SiC ceramic heater by spark plasma sintering" Trans. KIEE, vol. 58, no. 4, pp. 770-776, 2009.

15.
J. Y. Ju, H. S. Lee, S. M. Jo, J. H. Lee, C. H. Kim. J. H. Park, Y. D. Shin, "Properties of SiC-ZrB2 electroconductive ceramic composites by spark plasma sintering" Trans. KIEE, vol. 58, no. 9, pp. 1757-1763, 2009.

16.
Xiaoyan Song, w Xuemei Liu, J. Zhang, "Neck formation and self-adjusting mechanism of neck growth of conducting powders in spark plasma sintering" J. Am. Ceram. Soc., 89[2], pp. 494-500, 2006. crossref(new window)

17.
Shu-Qi Guo, Toshiyuki Nishimura, Yutaka Kagawa, and Jenn-Ming Yang, "Spark plasma sintering of zirconium diborides" J. Am. Ceram. Soc., 91[9], pp. 2848-2855, 2008. crossref(new window)

18.
L. J. van der Pauw, "A method of measuring specific resistivity and Hall effect of discs of arbitrary shape" Philips Res. Repts., 13, pp. 1-9, 1958.

19.
A. Rezaie, W. G. Fahrenholtz, G. E. Hilmas, "Oxidation of zirconium diboride-silicon carbide at 1500 ${^{\circ}C}$ at a low partial pressure of oxygen" J. Am. Ceram. Soc., 89[10], pp. 3240-3245, 2006. crossref(new window)

20.
W. G. Fahrenholtz, "Thermodynamic analysis of $ZrB_2-SiC$ oxidation: Formation of SiC-depleted region," J. Am. Ceram. Soc., 90[1], pp. 143-148, 2007. crossref(new window)

21.
J. B. Hurst, S. Dutta, "Simple processing method for high-strength silicon carbide" J. Am. Ceram. Soc., 70[11]. pp. C303-308, 1987.

22.
A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas, "High-strength zirconium diboride-based ceramics" J. Am. Ceram. Soc., 87[6], pp. 1170-1172, 2004. crossref(new window)

23.
M. Nader, F. Aldinger, M. J. Hoffmann, "Influence of the ${\alpha}/{\beta}$ phase transformation on microstructural development and mechanical properties of liquid phase sintered silicon carbide" J. Mat. Sci., 34, pp. 1197-1204, 1999. crossref(new window)

24.
Y. W. Kim, M. Mitomo, H. Emoto, J. G. Lee, "Effect of initial $\alpha$-phase content on microstructure and mechanical properties of sintered Silicon carbide" J. Am. Ceram. Soc., 81[12], pp. 3136-3140, 1998. crossref(new window)

25.
Y. W. Kim, M. Mitomo, H. Hirotsuru, "Microstructure development of silicon carbide containing large seed grains" J. Am. Ceram. Soc., 80[1], pp. 99-105, 1997. crossref(new window)

26.
W. Wang, Z. Fu, H. Wang, R. Yuan, "Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of $TiB_2$ ceramics" Journal of the European Ceramic Society, 22, pp. 1045-1049, 2002. crossref(new window)

27.
A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas, "Re-active hot pressing of zirconium diboride", Journal of the European Ceramic Society, 29, pp. 3401-3408, 2009. crossref(new window)

28.
A. Kondo, "Electrical conduction mechanism in recrystallized SiC" Journal of the Ceramic Society of Japan, Int. Edition, vol. 100, pp. 1204-1208, 1993.

29.
R. Landauer, "The electrical resistance of binary metallic mixtures" RNAL of Applied Physics, vol. 23, no. 7, pp. 779-784, 1952. crossref(new window)

30.
Y. D. Shin, J. Y. Ju, J. S. Kwon, "Electrical conductive mechanism of hot-pressed $\alpha-SiC-ZrB_2$ composites" Trans. KIEE, Vol. 48C, No. 2, pp. 104-108, 1999.