JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Modeling and Investigation of Multilayer Piezoelectric Transformer with a Central Hole for Heat Dissipation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Modeling and Investigation of Multilayer Piezoelectric Transformer with a Central Hole for Heat Dissipation
Thang, Vo Viet; Kim, In-Sung; Jeong, Soon-Jong; Kim, Min-Soo; Song, Jae-Sung;
  PDF(new window)
 Abstract
A multilayer square-type piezoelectric transformer with a hole at the center was investigated in this paper. Temperature distribution at the center was improved by using this construction, therefore increasing input voltage and output power. This model was simulated and investigated successfully by applying a finite element method (FEM) in ATILA software. An optimized structure was then fabricated, examined, and compared to the simulation results. Electrical characteristics, including output voltage and output power, were measured at different load resistances. The temperature distribution was also monitored using an infrared camera. The piezoelectric transformer operated at first radial vibration mode and a frequency area of 70 kHz. The 16 W output power was achieved in a three-layer transformer with 96% efficiency and temperature rise from room temperature under 115 V driving voltage, 100 matching load, size, and 2 mm hole diameter. With these square-type multilayer piezoelectric transformers, the temperature was concentrated around the hole and lower than in piezoelectric transformers without a hole.
 Keywords
Central hole;Heat dissipation;Multilayer piezoelectric transformer;Simulation;Temperature distribution;Thermal reduction;
 Language
English
 Cited by
1.
Electrical Properties of Lead-Free $0.98(Na_{0.5}K_{0.5}Li_{0.1})NbO_{3}-0.02Ba(Zr_{0.52}Ti_{0.48})O_{3}$ Ceramics by Sintering Temperature,;;;

Electronic Materials Letters, 2012. vol.8. 3, pp.289-293 crossref(new window)
2.
Dielectric and Piezoelectric Properties of $0.95(Na_{0.5}K_{0.5})NbO_3-0.05CaTiO_3$ Ceramics with $Ag_2O$ Contents,;;;;;;;;;

Electronic Materials Letters, 2012. vol.8. 6, pp.577-580 crossref(new window)
3.
High Efficiency Step-Down Flyback Converter Using Coaxial Cable Coupled-Inductor,;;

Journal of Power Electronics, 2013. vol.13. 2, pp.214-222 crossref(new window)
4.
Effect of Sintering Temperatures on the Piezoelectric and Dielectric Properties of $0.98(Na_{0.5}K_{0.5})NbO_3-0.02(Ba_{0.5}Ca_{0.5})TiO_3$ Ceramics,;;;;;;;

Electronic Materials Letters, 2013. vol.9. 2, pp.237-240 crossref(new window)
5.
Effect of sintering temperatures on electrical properties of $0.95(Na_{0.5}K_{0.5})NbO_3-0.05(Ba_{0.5}Sr_{0.5})(Ti_{0.95}Sn_{0.05})O_3$ lead-free ceramics,;;;;;;;;

Journal of Ceramic Processing Research, 2014. vol.15. 1, pp.26-29
1.
Dielectric and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 ceramics with Ag2O contents, Electronic Materials Letters, 2012, 8, 6, 577  crossref(new windwow)
2.
Effect of sintering temperatures on the piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3-0.02(Ba0.5Ca0.5)TiO3 ceramics, Electronic Materials Letters, 2013, 9, 2, 237  crossref(new windwow)
3.
Piezoelectric Properties of ZnO-Doped 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ta0.48)O3Ceramics, Integrated Ferroelectrics, 2012, 140, 1, 140  crossref(new windwow)
4.
Piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3–0.02Ba(ZrxTi(1−x))O3 ceramics, Materials Research Bulletin, 2012, 47, 10, 2863  crossref(new windwow)
5.
Electrical and Structural Properties of 0.98(Na0.5K0.5)NbO3–0.02Ba(Zr0.52Ti0.48)O3Ceramics with CuO Content, Japanese Journal of Applied Physics, 2012, 51, 7R, 075802  crossref(new windwow)
6.
Electrical properties of lead-free 0.98(Na0.5K0.5Li0.1)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics by sintering temperature, Electronic Materials Letters, 2012, 8, 3, 289  crossref(new windwow)
7.
High Efficiency Step-Down Flyback Converter Using Coaxial Cable Coupled-Inductor, Journal of Power Electronics, 2013, 13, 2, 214  crossref(new windwow)
 References
1.
V. V. Thang, I. S. Kim, H. K. Joo, J. S. Song, S. J. Jeong, and M. S. Kim, "Investigation of the Optimum Design for a 10 W Step-down 3-layer Piezoelectric Transformer", J. Korean Phys. Soc., 58, pp. 622-626, 2011. crossref(new window)

2.
K. J. Lim, S. H. Park, O. D. Kwon, and S. H. Kang, KIEE Inter. Trans. Elec. App. , 5-C, 102 (2005).

3.
H. K. Joo, I. S. Kim, J. S. Song, S. J. Jeong, and M. S. Kim, J. Korean Phys. Soc., 56, 374 (2010). crossref(new window)

4.
I. S. Kim, H. K. Joo, S. J. Jeong, M. S. Kim, and J. S. Song, Phys. Status Solidi., 7, 2331 (2010). crossref(new window)

5.
I. S. Kim, H. K. Joo, J. S. Song, S. J. Jeong, and M. S. Kim, J. Korean Phys. Soc., 57, 963 (2010). crossref(new window)

6.
S. Priya, S. Ural, H. W. Kim, K. Uchino, and T. Ezaki, Jpn. J. Appl. Phys., 43, 3503 (2004). crossref(new window)

7.
P. Laoratanakul and K. Uchino, Appl. Ferroelect. 2004. ISAF-04. 2004 14th IEEE Inter. Symp., 229 (2004).

8.
I. S. Kim, H. K. Joo, S. J. Jeong, M. S. Kim, J. S. Song, and V. V. Thang, J. Korean Phys. Soc., 58, 627 (2011). crossref(new window)

9.
I. S. Kim, M. S. Kim, S. J. Jeong, J. S. Song, H. K. Joo, V. V. Thang, and A. Muller, J. Korean Phys. Soc., 58, 580 (2011). crossref(new window)

10.
S. Priya, H. Kim, S. Ural, and K. Uchino, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 53, 810 (2006).

11.
Y. J. Yang, C. C. Chen, Y. M. Chen, and C. K. Lee, J. Chin. Inst. Eng. 31, 925 (2008). crossref(new window)

12.
H. L. Li, J. H. Hu, and H. L. W. Chan, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 51, 1247 (2004). crossref(new window)

13.
E. Heinonen, J. Juuti, and S. Leppävuori, J. Eur. Ceram. Soc., 25, 2467 (2005). crossref(new window)

14.
S. T. Ho, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 54, 2110 (2007). crossref(new window)

15.
T. Tsuchiya, Y. Kagawa, N. Wakatsuki, and H. Okamura, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 48, 872 (2001).

16.
B. Koc, Y. Gao, and K. Uchino, Jpn. J. Appl. Phys. 42, 509 (2003). crossref(new window)

17.
H. W. Yoo, C. H. Lee, J. S. Rho, and H. K. Jung , IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 53, 8 (2006). crossref(new window)

18.
S. J. Yoon, J. W. Choi, J. Y. Choi, D. D. Wan, Q. Li, and Y. Yang, J. K. Phys. Soc. 57, 863 (2010). crossref(new window)

19.
A. M. Sanchez, M. Sanz, R. Prieto, J. A. Oliver, P. Alou, and J. A. Cobos , IEEE Trans. Ind. Electron., 55, 1 (2008).

20.
J. L. Jones, B. J. Iverson, and K. J. Bowman, J. Am. Ceram. Soc., 90, 2297 (2007). crossref(new window)