JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Impact of Interface Charges on the Transient Characteristics of 4H-SiC DMOSFETs
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Impact of Interface Charges on the Transient Characteristics of 4H-SiC DMOSFETs
Kang, Min-Seok; Bahng, Wook; Kim, Nam-Kyun; Ha, Jae-Geun; Koh, Jung-Hyuk; Koo, Sang-Mo;
  PDF(new window)
 Abstract
In this paper, we study the transient characteristics of 4H-SiC DMOSFETs with different interface charges to improve the turn-on rising time. A physics-based two-dimensional mixed device and circuit simulator was used to understand the relationship between the switching characteristics and the physical device structures. As the /SiC interface charge increases, the current density is reduced and the switching time is increased, which is due primarily to the lowered channel mobility. The result of the switching performance is shown as a function of the gate-to-source capacitance and the channel resistance. The results show that the switching performance of the 4H-SiC DMOSFET is sensitive to the channel resistance that is affected by the interface charge variations, which suggests that it is essential to reduce the interface charge densities in order to improve the switching speed in 4H-SiC DMOSFETs.
 Keywords
4H-SiC;DMOSFET;Mixed-mode;Transient;Interface charge;
 Language
English
 Cited by
1.
Electrical Characteristics of Enhancement-Mode n-Channel Vertical GaN MOSFETs and the Effects of Sidewall Slope,;;;;;;;

Journal of Electrical Engineering and Technology, 2015. vol.10. 3, pp.1131-1137 crossref(new window)
1.
Electrical Characteristics of Enhancement-Mode n-Channel Vertical GaN MOSFETs and the Effects of Sidewall Slope, Journal of Electrical Engineering and Technology, 2015, 10, 3, 1131  crossref(new windwow)
 References
1.
O.J, Guy, M. Lodzinski, K.S. Teng, T.G.G Maffeis, M. Tan, I. Blackwood, P.R. Dunstan, O. Al-Hartony, S.P Wilks, T. Wilby, N. Rimmer, D. Lewis, and J. Hopkins, Appl. Surf. Sci. 254, p. 8098, 2008. crossref(new window)

2.
R. habchi, C. salame, A. Khoury, and P. Mialhe, Appl. Phys. Lett. 88, p. 153503, 2006. crossref(new window)

3.
S. Hino, T. Hatayama, J. Kato, E. Tokumitsu, N. Miura, and T. Oomori, Appl. Phys. Lett. 92, p. 183503, 2008. crossref(new window)

4.
A. Saha, and James A. Cooper, IEEE Trans. Electron Devices 54, p. 2786, 2007. crossref(new window)

5.
K. Matocha, Solid-State Electron. 52 (2008), p. 1631. crossref(new window)

6.
A. Saha and James A. Cooper, IEEE Trans. Electron Devices 54, p. 2786, 2007. crossref(new window)

7.
M. Martin, A. Saha, and James A. cooper, IEEE Trans. Electron Devices 51, p. 1721, 2004. crossref(new window)

8.
T. Tamaki, Ginger G. Walden, Y. Sui, and James A. Cooper, IEEE Trans. Electron Devices 55, p. 1920, 2008. crossref(new window)

9.
Y. C. Choi, H. Y. Cha, Lester F. Eastman, and Michael G. Spencer, IEEE Trans. Electron Devices 52, p. 1940, 2005. crossref(new window)

10.
S. H. Ryu, A. Agarwal, J. Richmond, J. Palmour, N. Saks, and J. Williams IEEE Trans. Electron Devices 23, p. 321, 2002. crossref(new window)

11.
S. Inaba, T. Mizuno, M. Iwase, M. Takahashi, H. Niiyama, H. Hazama, M. Yoshimi, and A. Toriumi, IEEE Trans. Electron Devices 41, p. 2399, 1994. crossref(new window)

12.
K. Sheng, Y. Zhang, M. Su, J. H. Zhao, X. Li, P. Alexandrov, L. Fursin, Solid-State Electron. 52, p. 1636, 2008. crossref(new window)