JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SIMM Method Based on Acceleration Extraction for Nonlinear Maneuvering Target Tracking
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SIMM Method Based on Acceleration Extraction for Nonlinear Maneuvering Target Tracking
Son, Hyun-Seung; Park, Jin-Bae; Joo, Young-Hoon;
  PDF(new window)
 Abstract
This paper presents the smart interacting multiple model (SIMM) using the concept of predicted point and maximum noise level. Maximum noise level means the largest value of the mere noises. We utilize the positional difference between measured point and predicted point as acceleration. Comparing this acceleration with the maximum noise level, we extract the acceleration to recognize the characteristics of the target. To estimate the acceleration, we propose an optional algorithm utilizing the proposed method and the Kalman filter (KF) selectively. Also, for increasing the effect of estimation, the weight given at each sub-filter of the interacting multiple model (IMM) structure is varying according to the rate of noise scale. All the procedures of the proposed algorithm can be implemented by an on-line system. Finally, an example is provided to show the effectiveness of the proposed algorithm.
 Keywords
Acceleration;Kalman Filter (KF);Interacting Multiple Model (IMM);Maneuvering target tracking;
 Language
English
 Cited by
1.
축별 분할된 PSO-FCM을 이용한 외란 감소방안: 함정용 레이더의 위상변화 적용,손현승;박진배;주영훈;

제어로봇시스템학회논문지, 2012. vol.18. 7, pp.638-643 crossref(new window)
2.
A Target Tracking Based on Bearing and Range Measurement With Unknown Noise Statistics,;

Journal of Electrical Engineering and Technology, 2013. vol.8. 6, pp.1520-1529 crossref(new window)
3.
Segmentalized FCM-based Tracking Algorithm for Zigzag Maneuvering Target,;;;

International Journal of Control, Automation, and Systems, 2015. vol.13. 1, pp.231-237 crossref(new window)
1.
The Reduction Methodology of External Noise with Segmentalized PSO-FCM: Its Application to Phased Conversion of the Radar System on Board, Journal of Institute of Control, Robotics and Systems, 2012, 18, 7, 638  crossref(new windwow)
2.
Segmentalized FCM-based tracking algorithm for zigzag maneuvering target, International Journal of Control, Automation and Systems, 2015, 13, 1, 231  crossref(new windwow)
3.
Intelligent Range Decision Method for Figure of Merit of Sonar Equation, Journal of Korean Institute of Intelligent Systems, 2013, 23, 4, 304  crossref(new windwow)
4.
A Target Tracking Based on Bearing and Range Measurement With Unknown Noise Statistics, Journal of Electrical Engineering and Technology, 2013, 8, 6, 1520  crossref(new windwow)
 References
1.
Y. Bar-shalom and X. R. Li, Estimation and tracking principles, techniques, and software, Artech House, 1993.

2.
M. S. Grewal and A. P. Andrews, Kalman filtering theory and practice, Prentice Hall, 1993.

3.
Y. Bar-shalom and T. E. Fortman, Tracking and data association, Academic Press, 1988.

4.
S. Blackman and R. Popoli, Design and analysis of modern tracking systems, Artech House, 1999.

5.
Craig M. Payne, Principles of Naval Weapon Systems, Naval Institute Press, 2006.

6.
B. J. Lee, J. B. Park, and Y. H. Joo, "Fuzzy-logicbased IMM algorithm for tracking a maneuvering target", IEE Proceedings Radar, Sonar and Navigation, vol. 152, no. 1, pp. 16-22, 2005. crossref(new window)

7.
S. Y. Noh, J. B. Park, and Y. H. Joo, "Intelligent tracking algorithm for maneuvering target using Kalman filter with fuzzy gain", IET Proceedings- Radar, Sonar and Navigation, vol. 1, no. 3, pp. 241- 247, 2007. crossref(new window)

8.
R. W. Osborne, III, Y. Bar-shalom, and T. Kirubarajan, "Radar measurement noise variance estimation with several targets of opportunity", IEEE Transactions on Aerospace and Electronic Systems, vol. 44, pp. 985-995, 2008. crossref(new window)

9.
Hyun-Sik Kim, Joon-Goo Park, and Dongik Lee, "Adaptive fuzzy IMM algorithm for uncertain target tracking", International Journal of Control, Automation, and Systems, vol. 7, no. 6, pp. 1001- 1008, 2009. crossref(new window)

10.
Singer, R. A. "Estimating optimal tracking filter performance for manned maneuvering targets", IEEE Transactions Aerospace and Electronic Systems, AES-6, vol. 4, pp. 473-483, 1970. crossref(new window)

11.
P. Gutman and V. Mordekhai "Tracking targets using adaptive Kalman filtering", IEEE Transactions on Aerospace and Electronic Systems, vol. 26, pp. 691- 698, 1990. crossref(new window)

12.
Y. T. Chan, A. G. C. Hu, and J. B. Plant, "A Kalman filter based tracking scheme with input estimation", IEEE Transactions on Aerospace and Electronic Systems, vol. 15, pp. 237-244, 1979. crossref(new window)

13.
P. L. Bogler, "Tracking a maneuvering target using input estimation", IEEE Transactions on Aerospace and Electronic Systems, vol. 23, pp. 298-310, 1987. crossref(new window)

14.
Y. Bar-Shalom and K. Birmiwal, "Variable dimension filter for maneuvering target tracking", IEEE Transactions on Aerospace and Electronic Systems, vol. 18, pp. 621-629, 1982. crossref(new window)

15.
A. T. Alouani, P. Xia, T. R. Rice, and W. D. Blair, "A two-stage Kalman estimator for state estimation in the presence of random bias and for tracking a maneuvering targets", Proceedings of 30th IEEE Conference on Decision and Control, pp. 2059-2062, 1991.

16.
G. A. Ackerson and K. S. Fu, "On state estimation in switching environments", IEEE Transactions on Automatic Control, vol. 15, pp. 10-17, 1970. crossref(new window)

17.
C. B. Chang and M. Athans, "State estimation for discrete system with switching parameters", IEEE Transactions on Aerospace and Electronic Systems, vol. 14, pp. 418-425, 1978. crossref(new window)

18.
H. A. P. Blom and Y. Bar-Shalom, "The interacting multiple model algorithm for systems with Markovian switching coefficients", IEEE Transactions on Automatic Control, vol. 33, pp. 780- 783, 1988. crossref(new window)

19.
Y. Bar-Shalom, K. C. Chang, and H. A. P. Blom, "Tracking a maneuvering target using input estimation versus the interacting multiple model algorithm", IEEE Transactions on Aerospace and Electronic Systems, vol. 25, pp. 296-300, 1989. crossref(new window)

20.
E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, "Interacting multiple model methods in target tracking: a survey", IEEE Transactions on Aerospace and Electronic Systems, vol. 34, pp. 103-123, 1998. crossref(new window)

21.
D. P. Atherton and H. J. Lin, "Parallel implementtation of IMM tracking algorithm using transputers", IEE Proceedings-Radar, Sonar and Navigation, vol. 141, pp. 325-332, 1994. crossref(new window)

22.
A. Munir and D. P. Atherton, "Adaptive interacting multiple model algorithm for tracking a maneuvering target", IEE Proceedings-Radar, Sonar and Navigation, vol. 142, pp. 11-17, 1995. crossref(new window)