JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Investigation of SLF Interruption Capability of Gas Circuit Breaker with CFD and a Mathematical Arc Model
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Investigation of SLF Interruption Capability of Gas Circuit Breaker with CFD and a Mathematical Arc Model
Cho, Yong-Sung; Kim, Hong-Kyu; Chong, Jin-Kyo; Lee, Woo-Young;
  PDF(new window)
 Abstract
This paper discusses the analysis of arc conductance in a gas circuit breaker (GCB) during current interruption process and the investigation method of the interruption capability. There are some limitations in the application of the computational fluid dynamics (CFD) for the implementation of an arc model around the current zero, despite the fact that it gives good results for the high-current phase arc. In this study, we improved the accuracy in the analysis of the interruption performance by attempting the method using CFD and a mathematical arc model. The arc conductance at 200 ns before current zero (G-200ns) is selected as the indicator to predict the current interruption of the Short Line Fault (SLF). Finally, the proposed method is verified by applying to the actual circuit breakers which have different interruption performances.
 Keywords
Gas circuit breaker;CFD;Mayr arc model;SLF;Arc conductance;;
 Language
English
 Cited by
1.
Analysis of SLF Interruption Performance of Self-Blast Circuit Breaker by Means of CFD Calculation,;;;

Journal of Electrical Engineering and Technology, 2014. vol.9. 1, pp.254-258 crossref(new window)
1.
Analysis of SLF Interruption Performance of Self-Blast Circuit Breaker by Means of CFD Calculation, Journal of Electrical Engineering and Technology, 2014, 9, 1, 254  crossref(new windwow)
 References
1.
J. D. Yan, T. M. Wong, X. Ye, M. Claessens, and M.T.C Fang: Proc. 16th Int. Conf. on Gas Discharges and Their Applications (2006) 157.

2.
H. K. Kim, J. K. Chong, and K. D. Song: JEET Vol. 5, No. 2 (2010) 264.

3.
R. Bini, N. T. Basse, and M. Seeger: J. Phys. D: Appl. Phys. 44 (2011) 025203 (9pp).

4.
E. SCHADE and K. RAGALLER: IEEE Trans. Plasma Sci. 3 (1982) 162.

5.
J. D. Yan, K. I. Nuttall, and M. T. C. Fang: J. Phys. D: Appl. Phys. 32 (1999) 1401-1406. crossref(new window)

6.
M. T. C. Fang and Q. Zhuang: J. Phys. D: Appl. Phys. 25 (1992) 1197. crossref(new window)

7.
M. T. C. Fang and Q. Zhuang, and X. J. Guo: J. Phys. D: Appl. Phys. 27 (1994) 74. crossref(new window)

8.
C. M. Franck and M. Seeger: Contrib. Plasma Phys. 46, No. 10, (2006) 787. crossref(new window)

9.
R. P. P. Smeets, V. Kertesz, S. Nishiwaki, K. Suzuki: IEEE/PES T&D Conference Asia Pacific (2002) 424.

10.
R. P. P. SMEETS, V. KERTESZ: Cigre Conf. paper A3-110 (2006).

11.
C. M. Dixon, J. D. Yan, and M. T. C. Fang: J. Phys. D: Appl. Phys. 37 (2004) 3309. crossref(new window)

12.
H. Nordborg and A. A. Iordanidis: J. Phys. D: Appl. Phys. 41 (2008) 135205 (10pp).

13.
A. M. Cassie: Cigre, Rep. 102 (1939) 588 [in France].

14.
O. Mayr: Archiv fur Elektrotechnik. Vol. Band 37, No. Heft 12 (1943) [in German].

15.
R. P. P. Smeets and v. Kertesz: IEE Proc. Generation, Transmission & Distribution, Vol. 147, No. 2 (2000) 121. crossref(new window)

16.
L. van der Sluis, and W. R. Rutgers: IEEE Trans. Power Delievery 7 (1992) 2037. crossref(new window)

17.
T. Shinkai, T. Koshiduka, T. Mori, and T. Uchii: Electrical Engineering in Japan, Vol. 167, No. 1 (2009) 9.