Advanced SearchSearch Tips
Robust Diagnosis Algorithm for Identifying Broken Rotor Bar Faults in Induction Motors
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Robust Diagnosis Algorithm for Identifying Broken Rotor Bar Faults in Induction Motors
Hwang, Don-Ha; Youn, Young-Woo; Sun, Jong-Ho; Kim, Yong-Hwa;
  PDF(new window)
This paper proposes a new diagnosis algorithm to detect broken rotor bars (BRBs) faults in induction motors. The proposed algorithm is composed of a frequency signal dimension order (FSDO) estimator and a fault decision module. The FSDO estimator finds a number of fault-related frequencies in the stator current signature. In the fault decision module, the fault diagnostic index from the FSDO estimator is used depending on the load conditions of the induction motors. Experimental results obtained in a 75 kW three-phase squirrel-cage induction motor show that the proposed diagnosis algorithm is capable of detecting BRB faults with an accuracy that is superior to a zoom multiple signal classification (ZMUSIC) and a zoom estimation of signal parameters via rotational invariance techniques (ZESPRIT).
Broken rotor bar;Induction motor;Fault diagnosis;Current signal;
 Cited by
유도전동기 온라인 감시진단 시스템 개발,김기범;윤영우;황돈하;선종호;정태욱;

조명전기설비학회논문지, 2014. vol.28. 5, pp.23-30 crossref(new window)
A Detection Method for Induction Motor Bar Fault Using Sidelobes Leakage Phenomenon of the Sliding Discrete Fourier Transform, IEEE Transactions on Power Electronics, 2017, 32, 7, 5560  crossref(new windwow)
Development of Online Monitoring System for Induction Motors, Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, 2014, 28, 5, 23  crossref(new windwow)
M. R. W. Group, "Report of large motor reliability survey of industrial and commercial installation, Part II," IEEE Trans. Ind. Appl., vol. IA-21, no. 4, pp. 865-872, July/Aug. 1985. crossref(new window)

M. E. H. Benbouzid, "A review of induction motors signature analysis as a medium for faults detection," IEEE Trans. Ind. Electron., vol. 47, no. 5, pp. 984-993, Oct. 2000. crossref(new window)

W. T. Thomson and M. Fenger, "Current signature analysis to detect induction motor faults," IEEE Ind. Appl. Mag., vol. 7, no. 4, pp. 26-34, July/Aug. 2001.

A. Bellini, F. Filippetti, G. Franceschini, C. Tassoni, and G. B. Kliman, "Quantitative evaluation of induction motor broken bars by means of electrical signature analysis," IEEE Trans. Ind. Appl., vol. 37, no. 5, pp.1248-1255, Sept./Oct. 2001. crossref(new window)

J.-H. Jung, J.-J Lee, and B.-H. Kwon, "Online diagnosis of induction motors using MCSA," IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1842-1852, Dec. 2006. crossref(new window)

H. Henao, C. Demian, and G.-A. Capolino, "A frequency-domain detection of stator winding faults in induction machines using an external flux sensor," IEEE Trans. Ind. Appl., vol. 39, no. 5, pp. 1272-1279, Sept./Oct. 2003. crossref(new window)

J. L. Zarader, M. Garnier, and M. Nicollet, "New frequency-filtering zoom," Int. J. Adapt. Control Signal Process., vol. 6, no. 6, pp. 547-560, Jun. 1992. crossref(new window)

A. Yazidi, H. Henao, G. A. Capolino, M. Artioli, and F. Filippetti, "Improvement of frequency resolution for three-phase induction machine fault diagnosis," in Proc. 40th IAS Annu. Meeting. Conf. Rec., 2005, vol. 1, pp. 20-25.

A. Bellini, A. Yazidi, F. Filippetti, C. Rossi, and G.-A. Capolino, "High frequency resolution techniques for rotor fault detection of induction machines," IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4200-4209, Dec. 2008. crossref(new window)

A. Ordaz-Moreno, R. de Jesus Romero-Troncoso, J. A. Vite-Frias, J. R. Rivera-Gillen, and A. Garcia-Perez, "Automatic online diagnosis algorithm for broken-bar detection on induction motors based on discrete wavelet transform for FPGA implementation," IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 2193-2202, May 2008. crossref(new window)

A. Bouzida, O. Touhami, R. Ibtiouen, A. Belouchrani, M. Fadel, and A. Rezzoug, "Fault diagnosis in industrial induction machines through discrete wavelet transform," IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4385-4395, Sept. 2011. crossref(new window)

J. Pons-Llinares, J. A. Antonino-Daviu, M. Riera-Guasp, M. Pineda-Sanchez, and V. Climente-Alarcon, "Induction motor diagnosis based on a transient current analytic wavelet transform via frequency Bsplines," IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1530-1544, May 2011. crossref(new window)

M. E. H. Benbouzid, M. Vieira, and C. Theys, "Induction motors' faults detection and localization using stator current advanced signal processing techniques," IEEE Trans. Power Electron., vol. 14, no. 1, pp. 14-22, Jan. 1999. crossref(new window)

F. Cupertino, E. de Vanna, L. Salvatore, and S. Stasi, "Analysis techniques for detection of IM broken rotor bars after supply disconnection," IEEE Trans. Ind. Appl., vol. 40, no. 2, pp. 526-533, Mar./Apr. 2004. crossref(new window)

S. H. Kia, H. Henao, and G.-A. Capolino, "A high-resolution frequency estimation method for three-phase induction machine fault detection," IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2305-2314, Aug. 2007. crossref(new window)

Y.-Y. Youn, S.-H. Yi, D.-H. Hwang, J.-H. Sun, D.-S. Kang, and Y.-H. Kim, "MUSIC-based diagnosis algorithm for identifying broken rotor bar faults in induction motors using flux signal," Journal of Electrical Engineering and Technology, vol. 8, no. 2, pp. 288-294, Mar. 2013. crossref(new window)

Y.-H. Kim, Y.-W. Youn, D.-H. Hwang, J.-H. Sun, and D.-S. Kang, "High-resolution parameter estimation method to identify broken rotor bar faults in induction motors," IEEE Trans. Ind. Electron., will be published.

M. Wax and T. Kailath, "Detection of signals by information theoretic criteria," IEEE Trans. Acoust., Speech and Signal Process., vol. ASSP-33, no. 2, pp. 387-392, Apr. 1985.

G. Strang, Calculus. Wellesley-Cambridge, 1991.

M. Kristensson, M. Jansson, and B. Ottersten, "Further results and insights on subspace based sinusoidal frequency estimation," IEEE Trans. Signal Process., vol. 49, no. 12, pp. 2962-2974, Dec. 2001. crossref(new window)

S. M. Kay, Fundamentals of statistical signal processing: detection theory. Englewood Cliffs, NJ: Prentice-Hall, 1993.

K. M. Siddiqui, and V. K. Giri, "Broken rotor bar fault detection in induction motors using wavelet transform," in Proc. Computing, Electronics and Electrical Technologies (ICCEET), 2012, pp. 1-6.

V. Rashtchi, and R. Aghmasheh, "A new method for identifying broken rotor bars in squirrel cage induction motor based on particle swarm optimization method," World academy of science, engineering and technology, vol. 43, pp. 694-698, July 2010.