Advanced SearchSearch Tips
Analytical Surface Potential Model with TCAD Simulation Verification for Evaluation of Surrounding Gate TFET
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Analytical Surface Potential Model with TCAD Simulation Verification for Evaluation of Surrounding Gate TFET
Samuel, T.S. Arun; Balamurugan, N.B.; Niranjana, T.; Samyuktha, B.;
  PDF(new window)
In this paper, a new two dimensional (2D) analytical modeling and simulation for a surrounding gate tunnel field effect transistor (TFET) is proposed. The Parabolic approximation technique is used to solve the 2-D Poisson equation with suitable boundary conditions and analytical expressions for surface potential and electric field are derived. This electric field distribution is further used to calculate the tunneling generation rate and thus we numerically extract the tunneling current. The results show a significant improvement in on-current characteristics while short channel effects are greatly reduced. Effectiveness of the proposed model has been confirmed by comparing the analytical results with the TCAD simulation results.
Surrounding gate TFET;Surface potential;Electric field distribution;
 Cited by
B. Iniguez, D.Jimenez, J.Roig, A.Hamdy and Hamid, "Explicit Continuous Model for Long-Channel Undoped Surrounding Gate MOSFETs," IEEE Transaction on Electron Devices, Vol. 52, No. 8, pp. 1868-1872, Aug., 2005. crossref(new window)

T. K. Chiang, "A new two-dimensional threshold Voltage model for cylindrical, fully depleted surrounding- gate (SG) MOSFETs" Microelectronics Reliability, Vol. 47, pp. 379-383, 2007. crossref(new window)

N.B. Balamurugan, K.Sankaranarayanan, and M. Fathima John," 2DTransconductance to Drain Current Ratio Modeling of Dual Material Surrounding Gate Nanoscale SOI MOSFETs", Journal of Semiconductor Technology and Science, Vol.9, No.2, Jun., 2009.

J. Appenzeller, Y.-M. Lin, J. Knoch, and P. Avouris, "Band-to-band tunneling in carbon nanotube fieldeffect transistors," Phys. Rev. Lett., vol. 93, no. 19, pp. 196805-1-196,805-4, Nov., 2004. crossref(new window)

K. K. Bhuwalka, J. Schulze, and I. Eisele, "Scaling the vertical tunnel FET with tunnel band gap modulation and gate work function engineering," IEEE Transactions on Electron Devices, Vol. 52, No. 5, pp. 909-917, May., 2005. crossref(new window)

L. Wang, E. Yu, Y. Taur and P. Asbeck, "Design of tunneling field effect transistors based on staggered hetero junctions for ultra low power applications," IEEE Electron Device Lett., Vol. 31, No. 5, pp- 431-433,May., 2010.

O. M. Nayfeh, C. N. Chleirigh, J. Hennessy, L. Gomez, J. L. Hoyt and D. A. Antoniadis, "Design of Tunneling Field-Effect Transisitors Using Strained- Silicon/Strained-Germanium Type-II Staggered Heterojunctions," IEEE Electron Device Lett., Vol. 29, No. 9, pp- 1074-1077, Sep., 2008.

J. Appenzeller, Y. M. Lin, J. Knoch, Z. H. Chen, and P. Avouris, "Comparing carbon nanotube transistors The ideal choice: A novel tunneling device design," IEEE Transactions on Electron Devices,, Vol. 52, No. 12, pp. 2568-2576,Dec., 2005. crossref(new window)

K. Boucart and A. M. Ionescu, "Double-gate tunnel FET with high- k gate dielectric," IEEE Transactions on Electron Devices, Vol. 54, No. 7, pp. 1725-1733, Jul., 2007. crossref(new window)

T.S.Arun samuel et al., "Analytical Modeling and Simulation of Dual Material Gate Tunnel Field Effect Transistors" accepted for Journal of Electrical Engineering and Technology.

Sneh Saurabh and M. Jagadesh Kumar, "Novel Attributes of a Dual Material Gate Nanoscale Tunnel Field-Effect Transistor," IEEE Transactions on Electron Devices, Vol. 58, No. 2, pp. 404-410, Feb., 2011. crossref(new window)

C. Sandow, J. Knoch, C. Urban, Q.-T. Zhao, and S. Mantl, "Impact of electrostatics and doping concentration on the performance of silicon tunnel fieldeffect transistors," Solid-State Electronics, vol. 53, no. 10, pp.1126-1129, Oct., 2009. crossref(new window)

Min jin Lee," Analytical Model of a single-gate silicon-on-insulator (SOI) tunneling field-effect transistors (TFETs)," Solid-State Electronics, Vol. 63, pp. 110-114, Sep., 2011. crossref(new window)

W. Vandenberghe, A. Verhulst, G. Groeseneken, B. Soree, and W. Magnus, "Analytical Model for Point and Line Tunneling in a Tunnel Field-Effect Transistor," in Proc. SISPAD, 2008, pp. 137-140.

A. S. Verhulst, B. Soree, D. Leonelli, W. G. Vandenberghe, G. Groeseneken, "Modeling the single-gate, double-gate, and gate-all-around tunnel field effect transistor," J. Appl. Phys, Vol. 107, No. 2, pp. 024518, Feb., 2010. crossref(new window)

M.G. Bardon,H.P. Neves, R.Puers, and C.V Hoof, "Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions," IEEE Trans., on Electron Devices, Vol. 57, No. 4, pp. 827-34, Apr., 2010. crossref(new window)

A. S. Verhulst, W. G. Vandenberghe, K. Maex, and G. Groeseneken, "Boosting the on-current of a nchannel nanowire tunnel field-effect transistor by source material optimization," J. Appl. Phys., Vol. 104, No. 6, pp. 064 514-1, Sep., 2008. crossref(new window)

E.O. Kane, "Zener tunneling in semiconductors," J.Phys. Chem.Solides, Vol. 12, No. 2, pp. 181-188, Jan. 1960. crossref(new window)

E.O. Kane, "Theory of tunneling," J. Appl. Phys., Vol. 32, No. 1, pp. 83-91, Jan. 1961. crossref(new window)

Sentaurus Device User Guide, Synopsys Inc., Version D-2010.03.