Fault-Tolerant Control of Five-Phase Induction Motor Under Single-Phase Open

- Journal title : Journal of Electrical Engineering and Technology
- Volume 9, Issue 3, 2014, pp.899-907
- Publisher : The Korean Institute of Electrical Engineers
- DOI : 10.5370/JEET.2014.9.3.899

Title & Authors

Fault-Tolerant Control of Five-Phase Induction Motor Under Single-Phase Open

Kong, Wubin; Huang, Jin; Kang, Min; Li, Bingnan; Zhao, Lihang;

Kong, Wubin; Huang, Jin; Kang, Min; Li, Bingnan; Zhao, Lihang;

Abstract

This paper deals with fault-tolerant control of five-phase induction motor (IM) drives under single-phase open. By exploiting a decoupled model for five-phase IM under fault, the indirect field-oriented control ensures that electromagnetic torque oscillations are reduced by particular magnitude ratio currents. The control techniques are developed by the third harmonic current injection, in order to improve electromagnetic torque density. Furthermore, Proportional Resonant (PR) regulator is adopted to realize excellent current tracking performance in the phase frame, compared with Proportional Integral (PI) and hysteresis regulators. The analysis and experimental results confirm the validity of fault-tolerant control under single-phase open.

Keywords

Fault-tolerant;Five-phase induction machine (IM);Decoupled model;Third harmonic current;Proportional Resonant (PR);

Language

English

Cited by

1.

References

1.

Hamid A. Toliyat, "Analysis of a concentrated winding induction machine for adjustable speed drive applications," IEEE Trans. Energy Convers., vol. 6, no. 4, pp. 679-683, 1991.

2.

R. Fu, T. A. Lipo, "Disturbance-free operation of a multiphase current-regulated motor drive with an opened phase," IEEE Trans. Ind. Appl., vol. 30, no. 10, pp. 1267-1274, Sept. 1994.

3.

E. Levi, R. Bojoi, F. Profumo, "Multiphase induction motor drives - A technology status review," IET Electr. Power Appl., vol. 1, no. 4, pp. 489-516, 2007.

4.

E. Levi, "Multiphase electric machines for variablespeed applications," IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 1893-1909, 2008.

5.

E. Levi, M. Jones, S. N. Vukosavic and H. A. Toliyat, "A novel concept of a multiphase, multimotor vector controlled drive system supplied from a single voltage source inverter," IEEE Trans. Power Electron., vol. 19, no. 2, pp. 320-335, 2004.

6.

H. Xu, H. A. Toliyat, L. J. Petersen, "Five-phase induction motor drives with dsp-based control system," IEEE Trans. Power Electron., vol. 17, no. 4, pp. 524-533, 2002.

7.

L. Parsa and H. A. Toliyat, "Five-phase permanentmagnet motor drives," IEEE Trans. Ind. Appl., vol. 41, no. 1, pp. 30-37, 2005.

8.

H. Xu, H. A. Toliyat, and L. J. Petersen, "Rotor field oriented control of a five-phase induction motor with the combined fundamental and third harmonic currents," Proc. IEEE APEC, Anaheim, CA, vol.1, 2001, pp. 392-398.

9.

Libo Zheng, Fletcher J. E., Williams B. W., "Dualplane vector control of a five-phase induction machine for an improved flux pattern," IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 1996-2005, 2008.

10.

Ayman S A-K, Shady M G, Mahmoud I M, "Optimum flux distribution with harmonic injection for a multiphase induction machine using genetic algorithm," IEEE Trans. Energy Convers., vol. 26, no. 2, pp. 501-512, 2011.

11.

Abdel-Khalik A S, Masoud M I, Williams Barry W, "Improved flux pattern with third harmonic injection for multiphase induction machines," IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1563-1578, 2012.

12.

H.-M. Ryu, J.-W. Kim, and S.-K. Sul, "Synchronousframe current control of multiphase synchronous motor under asymmetric fault condition due to open phases," IEEE Trans. Ind. Appl., vol. 42, no. 4, pp. 1062-1070, Jul./Aug. 2006.

13.

Y. Zhao and T. A. Lipo, "Modeling and control of a multi-phase induction machine with structural unbalance," Part I: Machine modeling and multidimensional current regulation," IEEE Trans. Energy Convers., vol. 11, no. 3, pp. 570-577, 1996.

14.

Y. Zhao and T. A. Lipo, "Modeling and control of a multi-phase induction machine with structural unbalance," Part II: Field-oriented control and experimental verification," IEEE Trans. Energy Convers., vol. 11, no. 3, pp. 578-584, 1996.

15.

R. Kiani-Nezhad, B. Nahidmobarakeh, L. Baghli, F. Betin and G. A. Capolino, "Modeling and control of six-phase symmetrical induction machines under fault condition due to open phases," IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 1966-1977, 2008.

16.

N. Bianchi, S. Bolognani and M. D. Pre, "Strategies for the fault-tolerant current control of a five-phase permanent-magnet motor," IEEE Trans. Ind. Appl., vol. 43, no. 4, pp. 960-970, 2007.

17.

A. Medoued, A. Lebaroud, A. Boukadoum, G. Clerc "On-line faults signature monitoring tool for induction motor diagnosis", Journal of Electrical Engineering & Technology, Vol. 5, No. 1, pp. 140-145, 2010.

18.

Hamid A. Toliyat, L. Parsa, N. Bianchi, "Resilient current control of five-phase induction motor under asymmetrical fault," Proc. IEEE APEC, TX, USA, vol. 1, 2002, pp. 64-71.

19.

S. Dwari and L. Parsa, "Fault-tolerant control of fivephase permanent magnet motors with trapezoidal back EMF," IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 476-485, 2011.

20.

Tani A., Mengoni M., Zarri L., "Control of Multiphase Induction Motors With an Odd Number of Phases Under Open-Circuit Phase Faults," IEEE Trans. Ind. Electron., vol. 27, no. 2, pp. 565-577, 2012.

21.

Del Blanco F. B., Degner M. W., Lorenz R. D., "Dynamic analysis of current regulators for AC motors using complex vectors,", IEEE Trans. Ind. Appl., vol. 35, no. 6, pp. 1424-1432, 1999.

22.

Zmood D N, Holmes D G., "Stationary frame current regulation of PWM inverters with zero steady-state error", IEEE Trans. Power Electron., vol. 18, no. 3, pp. 814-822, 2003.

23.

Holmes D. G., McGrath B. P., Parker S. T., "Current regulation strategies for vector-controlled induction motor drives," IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3680-3688, 2012.

24.

Holmes D. G., Lipo T. A., McGrath B. P., "Optimized Design of Stationary Frame Three Phase AC Current Regulators," IEEE Trans. Ind. Electron., vol. 24, no. 11, pp. 2417-2426, 2009.