JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Specialized Sensors and System Modeling for Safety-critical Application
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Specialized Sensors and System Modeling for Safety-critical Application
Jeong, Taikyeong Ted;
  PDF(new window)
 Abstract
Special purpose sensor design using MEMS (Micro-Electro-Mechanical Systems) technique is commonly used in Nondestructive Testing (NDT) research for the evaluation of existing structures and for the safety control and requirements. Various sensors and network have been developed for general infrastructures as well as safety-critical applications, e.g., aerospace, defense, and nuclear system, etc. In this paper, one of sensor technique using Fiber Bragg Gratings (FBG) and Finite Element Method (FEM) evaluation is discussed. The experimental setup and data collection technique is also demonstrated. The factors influencing test result and the advantages/limitations of this technique are also reviewed using various methods.
 Keywords
Sensors;Safety-critical application;System modeling;Structural health monitoring;
 Language
English
 Cited by
1.
Effects of Fabrication Process Variation on Impedance of Neural Probe Microelectrodes,;;;;

Journal of Electrical Engineering and Technology, 2015. vol.10. 3, pp.1138-1143 crossref(new window)
 References
1.
A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K.P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, "Fiber grating sensors," Journal of Lightwave Technology, vol. 15, pp. 1442-1463, August 1997 crossref(new window)

2.
M. Majumder, T. K. Gangopadhyaya, A. K. Chakrabortya, K. Dasguptaa, D. K. Bhattacharyaa, "Fibre Bragg gratings in structural health monitoring - Present status and applications," Journal of Sensors and Actuators A: Physical, vol. 147, pp. 150-164, September 2008 crossref(new window)

3.
T. H. T. Chana, L. Yua, H. Y. Tamb, Y. Q. Nia, S. Y. Liub, W.H. Chungb, L.K. Cheng, "Fiber brag grating sensors for structural health monitoring of Testing Ma bridge: Background and experimental observation," Journal of Engineering Structures, vol. 28, pp. 648-659, April 2006 crossref(new window)

4.
W. W. Morey, G. Meltz, W. H. Glenn, "Fiber bragg grating sensors," in Proc. SPIE Fiber optic and Laser sensors VII, vol. 1169, pp. 98, 1989

5.
J. D. Achenbach, "Structural health monitoring - What is the prescriptions," Mechanics Research Communications, vol. 36, no. 2, pp. 137-142, March 2009 crossref(new window)

6.
A. Kerrouche, W. J. O. Boyle, T. Sun, K. T. V. Grattan, "Design and in-the-field performance evaluation of compact FBG sensor system for structural health monitoring applications," Journal of Sensors and Actuators A: Physical, vol. 151, pp. 95-244, April 2009 crossref(new window)

7.
H. F. Lima, R. D. S. Vicente, R. N. Nogueira, I. Abe, P. S. D. B. André, C. Fernandes, H. Rodrigues, H. Varum, H. J. Kalinowski, A. Costa, J. D. L. Pinto, "Structural health monitoring of the Church of Santa Casa da Misericordia of Aveiro using FBG sensors", Journal of IEEE Sensors, vol. 8, pp. 1236 - 1242, July 2008 crossref(new window)

8.
J. M. Ko, Y. Q. Ni, "Technology developments in structural health monitoring of large-scale bridges," Journal of Engineering Structures, vol. 27, pp. 1715-1725, October 2005 crossref(new window)

9.
R.C. Tennyson, A.A. Mufti, S. Rizkalla, G. Tadros, B. Benmokrane, "Structural health monitoring of innovative bridges in Canada with fiber optic sensors," Smart Mater. Structure., vol. 10, pp. 560-573, June 2001 crossref(new window)

10.
H. Jabbar, Y. Song, and T. Jeong, "RF Energy Harvesting System and Circuits for Charging of Mobile Devices," IEEE Transactions on Consumer Electronics, vol. 56, no. 1, pp. 247-253, Feb. 2010 crossref(new window)

11.
T. Jeong, "Energy Charging and Harvesting Circuits Design in Bluetooth Environment for Smart Phone," IET Science, Measurement and Technology, vol. 7, no. 4, pp. 201-205, July 2013. crossref(new window)

12.
H. Jabber, S. Lee, K. Huh, and T. Jeong, "Energy Harvesting Technique by using Novel Voltage Multiplier Circuits and Passive Devices," IEICE Transactions on Electronics, E96-C, 5, May 2013

13.
V.E. Saouma, D.Z. Anderson, K. Ostrander, B. Lee, V. Slowik, "Application of fiber Bragg grating in local and remote infrastructure health monitoring," Materials and Structures, vol. 31, pp. 259-266, May 1998 crossref(new window)

14.
P. Giaccari, H.G. Limberger, P. Kronenberg, "In-fluence of humidity and temperature on polymide-coated fiber Bragg gratings," OSA: Bragg Gratings, Photosensitivity and Poling, vol. 61, pp. BFB2, July 2001

15.
Chang PC, Flatau A, Liu SC, "Health monitoring of civil infrastructure," Structural Health Monitoring, vol. 2, no. 3, pp. 257-267, 2003 crossref(new window)

16.
Worden K, Dulieu-Barton JM. "An overview of intelligent fault detection in systems and structures," Structural Health Monitoring, vol. 3, pp. 85-98, 2004 crossref(new window)

17.
B.F Spencer, Jr., M.E. Ruiz-Sandoval, N. Kurata, "Smart sensing technology: opportunities and challenges," Structural Control and Health Monitoring, pp. 349-68, 2004

18.
Ni YQ, Ko JM, "Literature review on vibration-based structural damage detection," Report No.WASHMS-01, 1998

19.
H. Jabbar, Y. Song, and T. Jeong, "RF Energy Harvesting System and Circuits for Charging of Mobile Devices", IEEE Transactions on Consumer Electronics, vol. 56, no.1, pp. 247-253, Feb. 2010. crossref(new window)

20.
S. Beak, B. Hieu, H. Lee, S. Choi, I. Kim, K. Lee, Y. Lee, and T. Jeong, "Novel binary tree Huffman decoding algorithm and field programmable gate array implementation for terrestrial-digital multimedia broadcasting mobile handheld," IET Science, Measurement and Technology, vol. 6, no. 6. pp. 527-532, Nov. 2012 crossref(new window)

21.
T. Jeong, "Implementation of Low Power Adder Design using Power Reduction Technique," Microelectronics Journal, Elsevier, vol. 39, pp. 1880-1886, Dec. 2008 crossref(new window)