Advanced SearchSearch Tips
Optimal Excitation Angles of a Switched Reluctance Generator for Maximum Output Power
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Optimal Excitation Angles of a Switched Reluctance Generator for Maximum Output Power
Thongprasri, Pairote; Kittiratsatcha, Supat;
  PDF(new window)
This paper investigates the optimal values of turn-on and turn-off angles, and ratio of flux linkage at turn-off angle and peak phase current positions of optimal control for accomplishing maximum output power in an 8/6 Switched Reluctance Generator (8/6 SRG). Phase current waveform is analyzed to determine optimal excitation angles (optimal turn-on and turn-off angles) of the SRG for maximum output power which is applied from a nonlinear magnetization curve in terms of control variables (dc bus voltage, shaft speed, and excitation angles). The optimal excitation angles in single pulse mode of operation are proposed via the analytical model. Simulated and experimental results have verified the accuracy of the analytical model.
Switched reluctance generator;Output power;Excitation angles;Magnetization curve;Analytical model;
 Cited by
A new outer-rotor flux switching permanent magnet generator for wind farm applications, Wind Energy, 2016  crossref(new windwow)
T. J. E. Miller, "Electronic Control of Switched Reluctance Machines", Oxford, UK,Newnes, 2001.

K. Xin, Q. Zhan, and J. Luo, "A New Simple Sensor less Control Method for Switched Reluctance Motor Drives", Journal of ElecEng& Tech, Vol.1, no. 1, pp. 52-57, 2006.

C. A. Ferreira, S. R. Jones, W. S. Heglund, and W. D. Jones, "Detailed Design of a 30-kW Switched Reluctance Starter/Generators System for a Gas Turbine Engine Application", IEEE Trans on IndAppl, vol. 31, no. 3, pp.553-561, 1995. crossref(new window)

D. A. Torrey, "Switched Reluctance Generators and Their Control", IEEE Trans on IndElec, vol. 49, no. 1, pp. 3-14, 2002. crossref(new window)

R. Cardenas, W. F. Ray, and G. M. Asher, "Swithced Reluctance Generators for Wind Energy Applications", Proc IEEE, pp. 559-564, 1995.

B. Fahimi, A. Emadi, and R. B. SepeJr, "A switched Reluctance Machine-Base Startor/Alternator for More Electic Cars", IEEE Trans on EnergConv, vol. 19, no. 1, pp. 116-124, 2004. crossref(new window)

P. Asadi, M. Ehsani, and B. Fahimi. "Design and Control Characterization of Switched Reluctance Generator for Maximum Output Power", Proc IEEE, pp. 1639-1644, 2006.

F. Soares and P. J. C. Branco, "Simulation of a 6/4 Switched Reluctance Motor Based on Matlab/ Simulink Environment", IEEE Trans on Aero and Elec Sys, vol. 37, no. 3, pp. 989-1009, 2001. crossref(new window)

J. M. Kokernak and D. A. Torrey, "Magnetic Circuit Model for the Mutually Coupled Switched-Reluctance Machine", IEEE Trans on Mag, vol. 36, no. 2, pp. 500-507, 2000. crossref(new window)

D. W. J. Pulle, "New Data Base for Switched Reluctance Drive Simulation", Proc. IEE on ElecPowAppl, vol. 138, no. 6, pp. 331-337, 1991.

Y. Xu and D. A. Torrey, "Study of the Mutually Coupled Switched Reluctance Machine Using the Finite Element-Circuit Coupled Method", Proc. IEE on ElecPowAppl, vol. 149, no. 2, pp. 81-86, 2002.

C. Roux and M. M. Morcos, "On the Use of a Simplified Model for Switched Reluctance Motors", IEEE Trans on EnerConv, vol. 17, no. 3, pp. 400- 405, 2002.

Y. Cai, Q. Yang, L. Su, Y. Wen, and Y. You, "Nonlinear Modeling for Switched Reluctance Motor by Measuring Flux Linkage Curves", ProcIEEE on Com Eng and Tech, V6-47-V6-51, 2010.

X. Cao, Z. Deng, T. Yao, J. Cai, and Z. Zhuang, "Analysis and Application of Phase Current in Switched Reluctance Generators", IEEE Trans. on Appl Sup, vol. 20, no. 3, pp. 1063-1067, 2010. crossref(new window)

T. Sawata. P. C. Kjaer, C. Cossar, and T. J. E. Miller, "A Control Strategy for the Switched Reluctance Generator", ProcICEM on Elec Mach and Sys, pp. 2131-2136, 1998.

Y. Sozer and D. A. Torrey, "Closed Loop Control of Excitation Parameters for High Speed Switched- Reluctance Generators", IEEE Trans on PowElec, vol. 19, no. 2, pp. 355-362, 2004.

H. Chen and J. J. Gu, "Implementation of the Three- Phase Switched Reluctance Machine System for Motors and Generators", IEEE/ASME Trans on Mech, vol. 15, no. 3, pp. 421-432, 2010. crossref(new window)

M. Ziapour, E. A fjei, and M. Yousefi. "Optimam Commutation Angles for Voltage Regulation of a High Speed Switched Reluctance Generator", Proc PEDST, pp. 271-276, 2013.

V. Nasirian, S. Kaboli and A. Davoudi, "Output power Maximization and Optimal Symmetric Freewheeling Excitation for Switched Reluctance Generators", IEEE Trans on IndAppl, vol. 49, no. 3, pp. 1031-1042, 2013.