Analysis of a Surface-Mounted Permanent-Magnet Machine with Overhang Structure by Using a Novel Equivalent Magnetic Circuit Model

- Journal title : Journal of Electrical Engineering and Technology
- Volume 9, Issue 6, 2014, pp.1960-1966
- Publisher : The Korean Institute of Electrical Engineers
- DOI : 10.5370/JEET.2014.9.6.1960

Title & Authors

Analysis of a Surface-Mounted Permanent-Magnet Machine with Overhang Structure by Using a Novel Equivalent Magnetic Circuit Model

Yeo, Han-Kyeol; Woo, Dong-Kyun; Lim, Dong-Kuk; Ro, Jong-Suk; Jung, Hyun-Kyo;

Yeo, Han-Kyeol; Woo, Dong-Kyun; Lim, Dong-Kuk; Ro, Jong-Suk; Jung, Hyun-Kyo;

Abstract

The rotor overhang is used to enhance the air-gap flux and improve the power density. Due to the asymmetry in the axial direction caused by the overhang, a time consuming 3D analysis is necessary when designing a motor with overhang. To solve this problem, this paper proposes an equivalent magnetic circuit model (EMCM) which takes account overhang effects without a 3D analysis by using effective air-gap length. The analysis time can be reduced significantly via the proposed EMCM. A reduction in the analysis time is essential for a preliminary design of a motor. In order to verify the proposed model, a 3-D finite-element method (FEM) analysis is adopted. 3-D FEM results confirm the validity of the proposed EMCM.

Keywords

Analytical method;Equivalent magnetic circuit model;Rotor overhang;SPM machine;

Language

English

Cited by

1.

Design and Analysis of Permanent Magnet Synchronous Generator Considering Magnetically Coupled Turbine-Rotor System,;;;;

References

1.

S. I. Babic and C. Akyel, "Torque calculation between circular coils with inclined axes in air," Int. J. Numer. Model., vol. 24, pp. 230-243, 2011.

2.

F. Baudart, E. Matagne, B. Dehez, and F. Labrique, "Analytical prediction of cogging torque in surface mounted permanent magnet motors," Mathematics and Computers in Simulation, vol. 90, pp. 205-217, 2013.

3.

W. P. Calixto, E. G. Marra, L. C. Brito, and B. P. Alvarenga, "A new methodology to calculate Carter factor using genetic algorithms," Int. J. Numer. Model., vol. 24, pp. 387-399, 2011.

4.

A. Chebak, P. Viarouge, and J. Cros, "Optimal design of a high-speed slotless permanent magnet synchronous generator with soft magnetic composite stator yoke and rectifier load," Mathematics and Computers in Simulation, vol. 81, pp. 239-251, 2010.

5.

F. Dubas, C. Espanet, and A. Miraoui, "An original analytical expression of the maximum magnet thickness in surface mounted permanent magnet motors," Eur. Phys. J. Appl. Phys., vol. 38, pp. 169-176, 2007.

6.

G. Gruosso and A. Brambilla, "Magnetic core model for circuit simulations including losses and hysteresis," Int. J. Numer. Model., vol. 21, pp. 309-334, 2008.

7.

D. Hanselman, Brushless Permanent Magnet Motor Design: 2nd ed., 2003, pp. 15-29.

8.

M. Hecquet, A. Ait-Hammouda, M. Goueygou, P. Brochet, and A. Randria, "Prediction of the electromagnetic noise of an asynchronous machine using experimental designs," Mathematics and Computers in Simulation, vol. 71, pp. 499-509, 2006.

9.

J. R. Hendershot and Jr., T. J. E. Miller, Design of Brushless Permanent-Magnet Motors: Oxford, U.K., 1994.

10.

M. F. Hsieh and Y. C. Hsu, "A generalized magnetic circuit modeling approach for design of surface permanent-magnet machines," IEEE Trans. Ind. Electron., vol. 59, pp. 779-792, 2012.

11.

F. N. Jurca and C. Martis, "Theoretical and experimental analysis of a three-phase permanent magnet claw-pole synchronous generator," IET Electr. Power Appl., vol. 6, pp. 491-503, 2012.

12.

Y. Kano, T. Kosaka, and N. Matsui, "Simple nonlinear magnetic analysis for permanent-magnet motors," IEEE Trans. Ind. Appl., vol. 41, pp. 1205-1214, 2005.

13.

G. Krebs, A. Tounzi, B. Pauwels, D. Willemot, and M. F. Piriou, "Design of a permanent magnet actuator for linear and rotary movements," Eur. Phys. J. Appl. Phys., vol. 44, pp. 77-85, 2008.

14.

P. Kurronen and J. Pyrhonen, "Analytic calculation of axial-flux permanent-magnet motor torque," IET Electr. Power Appl., vol. 1, pp. 59-63, 2007.

15.

G. Male, T. Lubin, S. Mezani, and J. Leveque, "Analytical calculation of the flux density distribution in a superconducting reluctance machine with HTS bulks rotor," Mathematics and Computers in Simulation, vol. 90, pp. 230-243, 2013.

16.

C. Mi, M. Filippa, W. Liu, and R. Ma, "Analytical method for predicting the air-gap flux of interior-type permanent-magnet machines," IEEE Trans. Magn., vol. 40, pp. 50-58, 2004.

17.

R. -B. Mignot, R. Glises, C. Espanet, E. S. Ellier, F. Dubas, and D. Chamagne, "Design of an axial flux PM motor using magnetic and thermal equivalent network," Eur. Phys. J. Appl. Phys., vol. 63, 30901, 2013.

18.

R. Qu and T. A. Lipo, "Analysis and modeling of airgap and zigzag leakage fluxes in a surface-mounted permanent-magnet machine," IEEE Trans. Ind. Appl., vol. 40, pp. 121-127, 2004.

19.

A. Rahideh and T. Korakianitis, "Analytical magnetic field distribution of slotless brushless permanent magnet motors - Part I. Armature reaction field, inductance and rotor eddy current loss calculations," IET Electr. Power Appl., vol. 6, pp. 623-638, 2012.

20.

A. Rahideh and T. Korakianitis, "Analytical magnetic field distribution of slotless brushless PM motors. Part 2: Open-circuit field and torque calculations," IET Electr. Power Appl., vol. 6, pp. 639-651, 2012.

21.

J.S. Rho, C.H. Lee, T.K. Chung, C.H. Im, and H.K. Jung, "Analysis of a nanopositioning actuator using numerical and analytic methods," IOP Smart Mater. Struct., vol. 17, 025025, 2008.

22.

J.S. Ro, S.K. Hong, and H.K. Jung, "Characteristic analysis and design of a novel permanent magnet actuator for a vacuum circuit breaker," IET Electr. Power Appl., vol. 7, pp. 87-96, 2013.

23.

J. S. Ro, K. P. Yi, T. K. Chung, and H. K. Jung, "Characteristic analysis and shape optimal design of a ring-type traveling wave ultrasonic motor," Eur. Phys. J. Appl. Phys., vol. 63, 10901, 2013.

24.

J. S. Ro, K. P. Yi, T. K. Chung, and H. K. Jung, "Characteristic analysis of a traveling wave ultrasonic motor using a cylindrical dynamic contact model," Journal of Electrical Engineering & Technology, vol. 8, pp. 742-750, 2013.

25.

M. Ruba, I.-A. Viorel, and L. Szabo, "Modular stator switched reluctance motor for fault tolerant drive systems," IET Electr. Power Appl., vol. 7, pp. 159-169, 2013.

26.

P. Sewell, K. J. Bradley, J. C. Clare, P. W. Wheeler, A. Ferrah, and R. Magill, "Efficient dynamic models for induction machines," Int. J. Numer. Model., vol. 12, pp. 449-464, 1999.

27.

Y. Sofiane, A. Tounzi, and F. Piriou, "A non linear analytical model of switched reluctance machines," Eur. Phys. J. Appl. Phys., vol. 18, pp. 163-172, 2002.

28.

H. Tiegna, Y. Amara, and G. Barakat, "Overview of analytical models of permanent magnet electrical machines for analysis and design purposes," Mathematics and Computers in Simulation, vol. 90, pp. 162-177, 2013.

29.

J. P. Wang, D. K. Lieu, W. L. Lorimer, and A. Hartman, "Influence of the permanent magnet overhang on the performance of the brushless dc motor," J. Appl. Phys., vol. 83, pp. 6362-6364, 1998.

30.

L. J. Wu, Z. Q. Zhu, D. Staton, M. Popescu, and D. Hawkins, "Analytical prediction of electromagnetic performance of surface-mounted PM machines based on subdomain model accounting for tooth-tips," IET Electr. Power Appl., vol. 5, pp. 597-609, 2011.