Advanced SearchSearch Tips
A Numerically Efficient Full Wave Analysis of Circular Resonators Microbandes Stacked Involving Multimetallisations
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Numerically Efficient Full Wave Analysis of Circular Resonators Microbandes Stacked Involving Multimetallisations
Chebbara, F.; Fortaki, T.;
  PDF(new window)
The conventional geometry of a plate microstrip resonator is made up of a single metallic patch, which is printed on a monolayer dielectric substrate. Its arrangement is simple and easy to make, but it is limited in its functional abilities. Many searches have been realized to improve the bandwidth and the gain of the microstrip resonators. Among the various configurations proposed in the open literature, the stacked geometry seems to be very promising. By appropriate design, it is able to provide the operation in dual frequency mode, wide bandwidth enough and high gain. The theoretical investigations of structures composed of two stacked anti-reflection coatings, enhanced metallic coatings are available in the literature, however, for the stacked configurations involving three metallic coatings or more, not to exact or approximate analysis was conducted due to the complexity of the structure.
Staked;Ground plane;Isotropy;Galerkin method;the magnetic wall cavity;Circular microstrip;Patch;
 Cited by
H. Wang, X. B. Huang, and D. G. Fang, “A microstrip antenna array formed by microstrip line tooth-like-slot-patches,” IEEE Trans. Antennas Propagat., vol. 55, pp. 1210-1214, Apr. 2007. crossref(new window)

L. Bernard, “Small-size circularly polarized patch antenna with an opening for a video grenade,” IEEE Antennas Wireless Propagat. Lett., vol. 7, pp. 681-684, 2008. crossref(new window)

L. Barlatey, J. R. Mosig and T. Sphicopoulos. “Analysis of stacked microstrip patches with a mixed potential integral equation,” IEEE Trans. Antennas Propagat., vol. 38, pp. 608-615, May 1990. crossref(new window)

K. S. Kona and Y. R. Samii, “Novel probe-feeding architectures for stacked microstrip patch antennas,” Microw. Opt. Technol. Lett., vol. 38, no. 6, pp. 467-475, Sept. 2003. crossref(new window)

J. T. Bernhard and C. J. Tousignant, “Resonant frequencies of rectangular microstrip antennas with flush and spaced dielectric superstrates,” IEEE Trans. Antennas Propagat., vol. 47, pp. 302-308, Feb. 1999. crossref(new window)

M. Haridim, D. Shukrun, and H. Matzner, “A novel broadband triple-layer triangular patch antenna,” Microwave Opt. Technol. Lett., vol. 40, no. 1, pp. 66-70, Jan. 2004. crossref(new window)

T. Fortaki, “Contribution à l’étude des problèmes de caractérisation des antennes microbandes multicouches sans et avec ouvertures dans les plans de masse,” Thèse de Doctorat, Université de Constantine, Juin 2004.

T. Fortaki, L. Djouane, F. Chebara, and A. Benghalia, “On the dual-frequency behavior of stacked microstrip patches,” IEEE Antennas Wireless Propagat. Lett., vol. 7, pp. 310-313, 2008. crossref(new window)

F. Chebbara, M. Amir, and T. Fortaki, “The effect of a high temperature superconducting patch on a rectangular microstrip antenna,” KIEE Journal of Electrical Engineering & Technology, vol. 4, no. 2, pp. 277-281, 2009. crossref(new window)

T.Fortaki, L.Djouane, F.Chebara, and A. Benghalia,: Radiation of rectangular microstrip patch antenna covered with a dielectric layer . International Journal of Electronics september 2008; 95: 989-998. crossref(new window)

F. Chebbara, S. Benkouda, and T. Fortaki, “Fourier transform domain analysis of high Tc superconducting rectangular microstrip patch over ground plane with rectangular aperture,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 31, pp. 821-832. crossref(new window)

K. A. Michalski and D. Zheng, “Analysis of microstrip resonators of arbitrary shape,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 112-119, Jan. 1992. crossref(new window)

D. M. Pozar, Microwave Engineering. Reading, MA: Addison-Wesley, 1990.

D. M. Pozar, “Radiation and scattering characteristics of microstrip antennas on normally biased ferrite substrates,” IEEE Trans. Antennas Propagat., vol. 40, pp. 1084-1092, Sept. 1992. crossref(new window)

Q. Liu and W. C. Chew, “Curve-fitting formulas for fast determination of accurate resonant frequency of circular microstrip patches,” Proc. Inst. Elec. Eng., vol. 135, no. 5, pp. 289-292, Oct. 1988.

S. A. Long and M. D. Walton, “A dual-frequency stacked circular-disc antenna,” IEEE Trans. Antennas Propagat., vol. AP-27, pp. 270-273, Mar. 1979.

U. K. Revankar and A. Kumar, “Experimental investtigation of three-layer electromagnetically coupled circular mictrostrip antennas,” Electron. Lett., vol. 27, no. 13, pp. 1187-1189, June. 1991. crossref(new window)