Design and Analysis of Microstrip Line Feed Toppled T Shaped Microstrip Patch Antenna using Radial Basis Function Neural Network

- Journal title : Journal of Electrical Engineering and Technology
- Volume 10, Issue 2, 2015, pp.634-640
- Publisher : The Korean Institute of Electrical Engineers
- DOI : 10.5370/JEET.2015.10.2.634

Title & Authors

Design and Analysis of Microstrip Line Feed Toppled T Shaped Microstrip Patch Antenna using Radial Basis Function Neural Network

Aneesh, Mohammad; Kumar, Anil; Singh, Ashish; Kamakshi, Kamakshi; Ansari, J.A.;

Aneesh, Mohammad; Kumar, Anil; Singh, Ashish; Kamakshi, Kamakshi; Ansari, J.A.;

Abstract

This paper deals with the design of a microstrip line feed toppled T shaped microstrip patch antenna that gives dualband characteristics at 4 GHz and 6.73 GHz respectively. The simulation of proposed antenna geometry has been performed using method of moment based IE3D simulation software. A radial basis function neural network (RBFNN) is used for the estimation of bandwidth for dualband at 4 GHz and 6.73 GHz respectively. In RBFNN model, antenna parameters such as dielectric constant, height of substrate, and width are used as input and bandwidth of first and second band is considered as output of the network. To validate the RBFNN output, an antenna has been physically fabricated on glass epoxy substrate. The fabricated antenna can be utilized in S and C bands applications. RBFNN results are found in close agreement with simulated and experimental results.

Keywords

Artificial neural network;Microstrip patch antenna;Radial basis function;Bandwidth;

Language

English

Cited by

References

1.

W. W. Wu, E. F. Miller, W. L. Pritchard, and R. L. Pickholtz, “Mobile satellite communication,” Proc. IEEE, Vol. 82, pp. 1431-1448, Sept. 1997.

2.

B. R. Elbert, “The Satellite Communication Applications Handbook,” Norwood, MA, Artech House, 1997.

3.

B. Miller, “Satellite free the mobile phone,” IEEE spectrum, Vol. 35, pp. 26-35, March 1998.

4.

B. Wang, and Y. Lo, “Microstrip antennas for dual frequency operation,” IEEE Tran. Antenna Propagat., Vol. 32, pp. 938-934, Sept. 1984.

5.

C. Y. Huang, C. W. Ling, and J. S. Kuo, “Dual-band microstrip antenna using capacitive loading,” IEEE Trans. Antennas Propagt., Vol. 150, pp. 401-404, 2003.

6.

M.Polivka, M.Drahovzal, and M.Mazanek, “Synthesis of dualband broadside radiated microstrip patch antenna operating with TM10 and TM21 modes,” IEEE Antenna Propagat. Soc. Int. Symp., Vol.1, pp. 245-248, June 2004.

7.

S. H. Hwang, W. Kwak, J. I. Moon, and S. O. Park, “An internal dualband printed antenna for CDMA/PCS handsets,” Microw. Opt. Technol. Lett., Vol. 45, pp. 537-540, June 2005.

8.

I. Surjati, E. T. Rahardjo, and D. Hartanto, “Increasing bandwidth dual frequency triangular microstrip antenna feed by coplanar waveguide,” IEEE Trans., Asia-Pacific Conf. Comm., Busan, pp. 1-4, Aug. 2006.

9.

K. L. Lau, K. C. Kong, and K.M. Luk, “Dual-band stacked folded patch antenna,” Electronic Lett., Vol. 43, pp. 789-790, 2007.

10.

W. S. Chen, and K. Y. Ku, “Band-rejected design of the open slot antenna for WLAN/WiMAX operation,” IEEE Trans. Antennas Propagt., Vol. 56, 1163-1169, 2008.

11.

Y. J. Sung, “Simple tunable dual-band microstrip patch antenna,” Electronics Lett., Vol. 45, pp. 666- 667, 2009.

12.

M. A. Al-Joumayly, S. M. Aguilar, N. Behdad, and S. C. Hagness, “Dual-band miniaturized patch antennas for microwave breast imaging,” IEEE Antennas and Wireless Propagation Lett., Vol. 9, pp. 268-271, March 2010.

13.

Y. Li, Q. Xue, H. Z. Tan and Y. Long, “A dual frequency microstrip antenna using a double sided parallel strip line periodic structure,” IEEE Trans., Antenna Propag., Vol. 60, pp. 3016-3019, 2012.

14.

A. Singh, M. Aneesh, K. Kamakshi, A. Mishra, and J. A. Ansari, “Analysis of F-shape microstrip line fed dualband antenna for WLAN applications,” Wireless Netw. –DOI 10.1007/s11276-013-0599-4.

15.

K. P. Ray, and G. Kumar, “Multi-frequency and broadband hybrid coupled circular microstrip antennas,” Electronics Lett., Vol.33, pp.437-438, March 1997.

16.

Y. S. Shin, B. N. Kim, W. Kwak, and S. O. Park, “GSM/DCS/IMT-2000 triple-band built-in antenna for wireless terminals,” IEEE Trans. Antennas and Wireless Propag. Lett., Vol. 3, pp. 104-107, April 2004.

17.

L. Peng, C. L. Ruan, and X. H. Wu, “Design and operation of dual/triple-band asymmetric M-shaped microstrip patch antennas,” IEEE Trans. Antennas and Wireless Propag. Lett., Vol.9, pp. 1069-1072, 2010.

18.

K. F. Lee, K. M. Luk, K. M. Mak, S. L. S. Yang, “On the use of U-slots in the design of Dual-and Triple-Band Patch Antennas,” IEEE Trans. Antennas Propag. Magaz., Vol. 53, pp. 60-74, June 2011.

19.

M. Bod, H.R. Hassani, and M.M.S. Taheri, “Compact UWB printed slot antenna with extra bluetooth, GSM, and GPS bands,” IEEE Trans. Antennas Wireless Propag. Lett., Vol. 11, pp. 531-534, 2012.

20.

O. P Falade, Y. Gao, X. Chen, and C. Parini, “Stackedpatch dual-polarized antenna for triple-band handheld terminals,” IEEE Trans. Antennas Wireless Propag. Lett., Vol. 12 , pp. 202-205, 2013.

21.

I. J. Bahl, and P. Bhartia, Microstrip antennas, Artech House, Dedham, MA, 1980.

22.

K. R. Carver, and J. W. Mink, Microstrip antenna technology, IEEE Trans Antennas Propagat., Vol. 29, Issue 1, pp. 2-24, 1981.

23.

K. C. Gupta, and A. Benella (Editors), Microstrip antennas design, Artech House, Dedham, MA, 1988.

24.

J. R. James, and P. S. Hall, Handbook of microstrip antennas, IEE Electromagnetic Wave Series No. 28. Vol. 1 and 2, Peter Peregrinus Ltd., London, 1989.

25.

Y. T. Lo, S. M. Wright, and M. Davidovitz, “Microstrip Antennas,” Handbook of microwave and optical components, K. Chang (Editor), Vol. 1, Wiley, New York, 1989, pp. 764-889.

26.

J. F. Zurcher, and F. E. Gardiol, Broadband patch antennas, Artech House, Norwood, MA, 1995.

27.

D. M. Pozar, and D. H. Schaubert (Editors), Microstrip antennas: The analysis and design of microstrip antennas and arrays, IEEE Press, New York, 1995.

28.

S. Sagiroglu, K. Guney, M. Erler, “Calculation of Bandwidth for Electrically Thin and Thick Rectangular Microstrip Antennas with the Use of Multilayered Perceptrons,” Int J RF and Microwave CAE 9: 277-286, 1999.

29.

L. Vegni, and A. Toscano, “Analysis of microstrip antennas using neural networks,” IEEE Trans. Magn., Vol. 33, pp. 1414-1419, Mar. 1997.

30.

R. K. Mishra, and A. Patnaik, “Neural Network-Based CAD Model for the Design of Square-Patch Antennas,” IEEE transactions on antennas and propagation, Vol.46, No.12, December 1998, pp. 1890-1891.

31.

A. Patnaik, R. K. Mishra, G. K. Patra and S. K. Dash, “An artificial neural network model for effective dielectric constant of microstrip line,” IEEE Trans. Antennas Propagat.., Vol. 45, pp. 1697, Nov. 1997.

32.

R. K. Mishra, and A. Patnaik, “Designing Rectangular Patch Antenna Using the Neuro spectral Method”, IEEE transactions on antennas and propagation,” Vol. 51, No. 8, pp. 1914-21, Aug. 2003.

33.

P. M. Watson, and K. C. Gupta, “Design and optimization of CPW circuits using EM ANN models for CPW components,” IEEE Trans. Microwave Theory Techniques, Vol. 45, No. 12, pp. 2515-2523, Dec. 1997.

34.

A. H. Zaabab, Q. J. Zhang, and M. Nakhla, “Analysis and optimization of microwave circuits & devices using neural network models,” IEEE MTT-S Digest, pp. 393-396, 1994.

35.

S. Devi, D. C. Panda, and S. S. Pattnaik, “A novel method of using artificial neural networks to calculate input impedance of circular microstrip antenna,” Antennas and Propagation Society International Symposium, Vol. 3, pp. 462-465, June 16-21, 2002.

36.

D. Karaboga, K. Guney, S. Sagiroglu, and M. Erler, “Neural computation of resonant frequency of electrically thin and thick rectangular microstrip antennas,” IEEE Proceedings, Microwaves, Antennas and Propagation, Vol. 146, No. 2, pp. 155-159, Apr. 1999.

37.

K. Guney, and N. Sarikaya, “Resonant frequency calculation for circular microstrip antennas with a dielectric cover using adaptive network-based fuzzy inference system optimized by various algorithms,” Progress In Electromagnetic Research, Vol. 72, pp. 279-306, 2007.

38.

S. S. Pattnaik, D. C. Panda, and S. Devi, “Radiation resistance of coax-fed rectangular microstrip antenna using artificial neural networks,” Microwave and Optical Technology Lett., Vol. 34, No. 1, pp. 51-53, Jul. 5, 2002.

39.

V. V Thakare, and P. K. Singhal, “Bandwidth analysis by introducing slots in microstrip antenna design using ANN,” Progress In Electromagnetics Research M, Vol. 9, pp. 107-122, 2009.

40.

M. Aneesh, J. A. Ansari, Ashish Singh, Kamakshi and S. Verma, “RBF Neural Network Modeling of Rectangular Microstrip Patch Antenna,” 2012 Third International Conference Computer Comm. Technology, pp. 241-244, DOI 10.1109/ICCCT.2012.56

41.

K. Guney, and N. Sarikaya, “Adaptive neuro-fuzzy inference system for the input resistance computation of rectangular microstrip antennas with thin and thick substrates,” Journal of Electromagnetic Waves and Applications, Vol. 18, pp. 23-39, 2004.

42.

D. K. Neog, S. S. Pattnaik, D. C. Panda, S. Devi, B. Khuntia, and M. Dutta, “Design of a wideband microstrip antenna and the use of artificial neural networks in parameter calculation,” IEEE Antennas Propag. Mag., Vol. 47, No. 3, pp. 60-65, Jun. 2005.

43.

M. Aneesh, A. Singh, J. A. Ansari, Kamakshi, and S. S. Sayeed, “Investigations for performance improvement of X-shaped RMSA using artificial neural network by predicting slot size,” Progress In Electromagnetics Research C, Vol. 47, pp. 55-63, 2014.

44.

M. Aneesh, J. A. Ansari, A. Singh, Kamakshi, and S. S. Sayeed, “Analysis of microstrip line feed slot loaded patch antenna using artificial neural network,” Progress In Electromagnetics Research B, Vol. 58, pp. 35-46, 2014.

45.

IE3D simulation software, Zeeland, version 14.05, 2008.

46.

S.Haykin, Neural Networks a Comprehensive Foundation, Englewood Cliff, New Jersey, Macmillan Publishing Company, 1994.