Advanced SearchSearch Tips
Design and Analysis of Permanent Magnet Synchronous Generator Considering Magnetically Coupled Turbine-Rotor System
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Design and Analysis of Permanent Magnet Synchronous Generator Considering Magnetically Coupled Turbine-Rotor System
Kim, Byung-Ok; Choi, Bum-Seog; Kim, Jeong-Man; Cho, Han-Wook;
  PDF(new window)
In this paper, design and analysis of permanent magnet synchronous generator for ocean thermal energy conversion (OTEC) considering magnetically coupled turbine-rotor system is discussed. In particular, the rotor dynamics considering bearing span and journal shaft diameter is highlighted. The two topologies of permanent magnet synchronous generator with magnetic coupling are employed for comparison of computed rotor dynamics and generating characteristics. The analysis results show that the critical speed of the turbine-rotor system is higher when the rotor is coupled by magnetically coupling. Finally, the experimental results confirmed the validity of the proposed design and analysis scheme and successful development.
Permanent magnet synchronous generator;Ocean thermal energy conversion (OTEC);Magnetic coupling;Rotor dynamics;Critical speed;
 Cited by
Gicquel, R., Energy systems : a new approach to engineering thermodynamics, CRC Press, 2012.

W.Wu, H.C. Lovatt, and J. B. Dunlop, “Analysis and design optimisation of magnetic couplings using 3D finite element modeling,” IEEE Trans. Magn., vol. 33, no. 5, pp. 4083-4085, Sept. 1997. crossref(new window)

J.D. Ede, Z.Q. Zhu, and D.Howe, “Rotor resonance of high-speed permanent magnet brushless machines,” IEEE Trans. Indust. Appl., vol. 38, no. 6, pp. 1542-1548, June 2002. crossref(new window)

T.J. Kim, S.M. Hwang, K.T. Kim. W.B. Jeong, and C.U.Kim, “Comparison of dynamic response for IPM and SPM motors by considering mechanical and magnetic coupling,” IEEE Trans. Magn., vol.37, no.4, pp.2818-2820, July 2001. crossref(new window)

K.H. Yim, J.W. Jang, G.H. Jang, M.K. Kim, and K.N. Kim, “Forced vibration analysis of an IPM motor for electrical vehicles due to magnetic force,” IEEE Trans. Magn., vol. 48, no. 11, pp. 2981-2984, Nov. 2012. crossref(new window)

K.N. Srinivas and R. Arumugan, “Static and dynamic vibration analyses of switched reluctance motors including bearings, housing, rotor dynamics, and applied loads,” IEEE Trans. Magn., vol. 40, no. 4, pp. 1911-1919, July 2004. crossref(new window)

J. Krotsch and B. Piepenbreier, “Radial forces in external rotor permanent magnet synchronous motor with non-overlapping windings,” IEEE Trans. Indust. Electron., vol. 59, no. 5, pp. 2267-2276, May 2012. crossref(new window)

T.J. Kim, S.M. Hwang, and N.G. Park, “Analysis of vibration for permanent magnet motor considering mechanical and magnetic coupling effects,” IEEE Trans. Magn., vol. 36, no. 4, pp. 1346-1350, July 2000. crossref(new window)

W.H. Kim, “A stress analysis method for the rotor design of an IPMSM considering radial force,” Journal of Electrical Engineering & Technology, vol.9, no.3, pp.888-892, 2014. crossref(new window)

T. A. Harris, Rolling bearing analysis,” John Wiley & Sons, 2001.

Mechanical vibration balance quality requirement for rotors in a constant (rigid) state, ISO 1940-1, 2003.

H.K. Yeo, D.K. Woo, J.S. Ro, H.K. Jung, “Analysis of a surface-mounted permanent magnet machine with overhang structure by using a novel equivalent magnetic circuit model,” Journal of Electrical Engineering & Technology, vol. 9, no. 6, pp. 1960-1966, 2014. crossref(new window)

G.T. Kim, G.W. Cho, W.S. Jang, K.B. Jang, “The optimal design of fractional-slot SPM to reduce cogging torque and vibration,” Journal of Electrical Engineering & Technology, vol. 7, no. 5, pp. 753-758, 2012. crossref(new window)