JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Surface Modification of Electrode with Solid Electrolyte Interphase for Hybrid Supercapacitor
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Surface Modification of Electrode with Solid Electrolyte Interphase for Hybrid Supercapacitor
Choi, Min-Geun; Kang, Soo-Bin; Yoon, Jung Rag; Lee, Byung Gwan; Jeong, Dae-Yong;
  PDF(new window)
 Abstract
A hybrid supercapacitor (HS) is an energy storage device used to enhance the low weight energy density (Wh/kg) of a supercapacitor. On the other hand, a sudden decrease in capacity has been pointed out as a reliability problem after many charge/discharge cycles. The reliability problem of a HS affects the early aging process. In this study, the capacity performance of a HS was observed after charge/discharge. For detailed analysis of the initial charge/discharge cycles, the charge and discharge curve was measured at a low current density. In addition, a solid electrolyte interphase (SEI) layer was confirmed after the charge/discharge. A HC composed of a lithium titanate (LTO) anode and active carbon cathode was used. The charge/discharge efficiency of the first cycle was lower than the late cycles and the charge/discharge rate was also lower. This behavior was induced by SEI layer formation, which consumed Li ions in the LTO lattice. The formation of a SEI layer after the charge/discharge cycles was confirmed using a range of analysis techniques.
 Keywords
Hybrid supercapacitor;Anode;Solid electrolyte interphase;
 Language
English
 Cited by
1.
The Characteristics of Asymmetric Hybrid Supercapacitor Cells and Modules for Power Quality Stabilization, The Transactions of The Korean Institute of Electrical Engineers, 2016, 65, 4, 617  crossref(new windwow)
 References
1.
Y. Kibi, T. Saito, M. Kurata, J. Tabuchi, A. Ochi, J. Power Sources vol. 60, pp. 219-224, 1996. crossref(new window)

2.
Y.Z. Wei, B. Fang, S. Iwasa, M. Kumagai, J. Power Sources vol. 141, pp. 386-391, 2005. crossref(new window)

3.
H. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, L.L. Zhang, A.H. MacDonal, R. S. Ruoff, Nat. Commun.vol. 5, pp. 1-7, 2014.

4.
W. Lee, H. Cha, J. Electr. Eng. Technol. vol. 10, pp. 146-154, 2015. crossref(new window)

5.
J.W. Han, K.M. Lee, D.H. Lee, S.W. Lee, J.R. Yoon, J. KIEEME vol. 23, pp. 660-666, 2010.

6.
Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, J. Phys. Chem. vol. 113, pp. 13103-13107, 2009.

7.
A.D. Fabio, A. Giorgi, M. Mastragostino, F. Soavi, J. Electrochem. Soc. vol. 148, pp. A845-A850, 2011.

8.
A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources vol. 157, pp. 11-27, 2006. crossref(new window)

9.
Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Science vol. 332, pp. 1537-1541, 2011. crossref(new window)

10.
K.H. An, W.S. Kim, Y.S. Park, J.M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, Adv. Funct. Mater. vol. 11, pp. 387-392, 2001. crossref(new window)

11.
L. Basirico, G. Lanzara, J. Power Sources vol. 271, pp. 589-596, 2014. crossref(new window)

12.
M.H. Tran, C.S. Yang, H. K. Jeong, Chem. Phys. Lett. vol. 578, pp. 106-109, 2013. crossref(new window)

13.
J. H. Lee, J. R. Yoon, Journal of Advanced Ceramics, 2(3) , pp. 285-290, 2013. crossref(new window)

14.
B. Li, F. Ning, Y.B. He, H. Du, Q.H. Yang, J. Ma, F. Kang, C.T. Hsu, Int. J. Electrochem. Sci. vol. 6, pp. 3220-3223, 2011.

15.
B.G. Lee, J.R. Yoon, J. Electr. Eng. Technol. vol. 7, pp. 207-211, 2012. crossref(new window)

16.
Q. Wang, Z. Wen, J. Li, Adv. Funct. Mater. vol. 16, pp. 2141-2146, 2006. crossref(new window)

17.
K. Karthikeyan, V. Aravindan, S.B. Lee, I.C. Jang, H.H. Lim, G.J. Park, M. Yoshio, Y.S. Lee, J. Power Sources vol. 195, pp. 3761-3764, 2010. crossref(new window)

18.
B.G. Lee, J.R. Yoon, Electron Mater. Lett., vol. 9. 6, pp. 871-873, 2013. crossref(new window)

19.
A.D. Pasquier, I. Plitz, J. Gural, S. Menocal, G. Amatucci, J. Power Sources vol. 113, pp. 62-71, 2003. crossref(new window)

20.
H.G. Jung, N. Venugopal, B. Scrosati, Y.K. Sun, J. Power sources vol. 221, pp. 266-271, 2013. crossref(new window)

21.
K. Karthikeyan, V. Aravindan, S.B. Lee, I.C. Jang, H.H. Lim, G.J. Park, M. Yoshio, Y.S. Lee, J. Alloy Compd. vol. 504, 224-227, 2010. crossref(new window)

22.
B.E. Conway, W.G. Pell, J. Solid State Electr. vol. 7, pp. 637-644, 2003. crossref(new window)

23.
D. Linzen, S. Buller, E. Karden, R.W.D. Doncker, IEEE T. Ind. Appl. vol. 41, pp. 1135-1141, 2005. crossref(new window)

24.
J. Ni, L. Yang, H. Wang, L. Gao, J. Solid State Electr. vol. 16,pp. 2791-2796, 2012. crossref(new window)

25.
M. Okamura, Electr. Eng. Jpn. vol. 116, pp. 40-51, 1996. crossref(new window)

26.
G. Gourdin, D. Zheng, P.H. Smith, D. Qu, Electrochim. Acta. vol. 112, pp. 735-746, 2013. crossref(new window)

27.
K. Xu, A. Cresce, U. Lee, J. Am. Chem. Soc. vol. 7, pp. 637-642, 2003.

28.
D. Aurbach, M.D. Levi, E. Levi, H. Teller, B. Markovsky, G. Salitra, U. Heider, L. Heider, J. Electrochem. Soc. vol. 145, pp. 3024-3034, 1998. crossref(new window)

29.
T. Eriksson, A.M. Andersson, A.G. Bishop, C. Gejke, T. Gustafsson, J.O. Thomas, J. Electrochem. Soc. vol. 149, pp. A69-A78, 2002. crossref(new window)