Advanced SearchSearch Tips
Microfabrication of Vertical Carbon Nanotube Field-Effect Transistors on an Anodized Aluminum Oxide Template Using Atomic Layer Deposition
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Microfabrication of Vertical Carbon Nanotube Field-Effect Transistors on an Anodized Aluminum Oxide Template Using Atomic Layer Deposition
Jung, Sunghwan;
  PDF(new window)
This paper presents vertical carbon nanotube (CNT) field effect transistors (FETs). For the first time, the author successfully fabricated vertical CNT-based FETs on an anodized aluminum oxide (AAO) template by using atomic layer deposition (ALD). Single walled CNTs were vertically grown and aligned with the vertical pores of an AAO template. By using ALD, a gate oxide material (Al2O3) and a gate metal (Au) were centrally located inside each pore, allowing the vertical CNTs grown in the pores to be individually gated. Characterizations of the gated/vertical CNTs were carried and the successful gate integration with the CNTs was confirmed.
Anodized aluminum oxide (AAO);Atomic layer deposition (ALD);Carbon nanotube (CNT);Field effect transistor (FET);
 Cited by
Influence of the barrier layer on the flexural properties of nanoporous alumina film, Microsystem Technologies, 2018  crossref(new windwow)
S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube,” Nature, vol. 393, pp. 49-52, May 1998. crossref(new window)

R. Martel, T. Schmidt, H. Shea, T. Hertel, and Ph. Avouris, “Single- and multi-wall carbon nanotube field-effect transistors ,” Applied Physics Letters, vol. 73, pp. 2447, 1998. crossref(new window)

A. Javey, H. Kim, M. Brink, Q. Wangi, A. Ural, J. Guo, P. McIntire, P. McEuen, M. Lunstrom, and H. Dai, “High-k dielectrics for advanced carbon-nanotube transistors and logic gates,” Nature Material, vol. 1, pp. 241-246, Dec. 2002. crossref(new window)

A. D. Franklin, R. A. Sayer, T. D. Sands, T. S. Fisher, and D. B. Janes, “Toward surround gates on vertical single-walled carbon nanotube devices,” Journal of Vacuum Science & Technology, vol. 27, no. 821, pp. 821-826, Mar. 2009.

S. Jung, “Vertical semiconducting single-walled carbon nanotube Schottky diode,” Journal of the Korean Physical Society, vol. 65, no. 1, pp. L1-L5, July 2014. crossref(new window)

G. Zhang, P. Qi, X. Wang, Y. Lu, X. Li, R. Tu, S. Bangsaruntip, D. Mann, L. Zhang, and H. Dai, “Selective etching of metallic nanotubes by gas-phase reaction,” Science, vol. 334, pp. 974-977, Nov. 2006.

A. Javey, J.Guo, Q. Wang, M. Lundstrom and H. Dai, “Ballistic carbon nanotube field-effect transistors,” Nature, vol. 424, pp. 654-657, Aug. 2003. crossref(new window)

M. R. Machmann, A. D. Franklin, A. Scott, D. B. Janes, T. D. Sands, and T. S. Fisher, "Lithographyfree in situ Pd contacts to templated single -walled carbon nanotubes," vol. 6, no. 12, pp. 2712-2717, Sep. 2006. crossref(new window)

D. B. Farmer and R. G. Gordon, “ALD of high-kdielectrics on suspended functionalized SWNT,” Electrochemical and Solid-State Letters, vol. 8, no. 4, pp. G89-G91, Feb. 2005. crossref(new window)

D.B. Farmer and R.G. Gordon, “Atomic layer deposition on suspended single-walled carbon nanotubes via gas-phase noncovalent functionalization,” Nano Letters, vol. 6, no. 4, pp. 699-703, Feb. 2006. crossref(new window)