Advanced SearchSearch Tips
A New Unified Scheme Computing the Quadrature Weights, Integration and Differentiation Matrix for the Spectral Method
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A New Unified Scheme Computing the Quadrature Weights, Integration and Differentiation Matrix for the Spectral Method
Kim, Chang-Joo; Park, Joon-Goo; Sung, Sangkyung;
  PDF(new window)
A unified numerical method for computing the quadrature weights, integration matrix, and differentiation matrix is newly developed in this study. For this purpose, a spline-like interpolation using piecewise continuous polynomials is converted into a global spline interpolation formula, with which the quadrature formulas can be derived from integration and differentiation of the transformed function in an exact manner. To prove the usefulness of the suggested approach, both the Lagrange and tension spline interpolations are represented in exactly the same form as global spline interpolation. The applicability of the proposed method on arbitrary nodes is illustrated using two different sets of nodes. A series of validations using three test functions is conducted to show the flexibility in selecting computational nodes with the present method.
Computational nodes;Quadrature formula;Spline interpolation;Spectral method;
 Cited by
H.-H. Kim, C.-J. Lee, J.-B. Park, J.-R. Shin, S.-Y. Jeong, ‘Two-Terminal Numerical Algorithm for Single-Phase Arcing Fault Detection and Fault Location Estimation Based on the Spectral Information,’ Journal of Electrical Engineering & Technology, Vol. 3, No. 4, Dec. 2008, pp. 460-467. crossref(new window)

Le Chi Kien, ‘Numerical Calculations and Analyses in Diagonal Type Magneto-hydro-dynamic Generator,’ Journal of Electrical Engineering & Technology, Vol. 8 , No. 6, Nov. 2013, pp. 1365-1370. crossref(new window)

M.-H. Kim, H.-B. Lee, H.-S. Kim, J.-K. Byun, ‘A New Unified Design Environment for Optimization of Electric Machines Based on Continuum Sensitivity and B-Spline Parametrization,’ Journal of Electrical Engineering & Technology, Vol. 6 No. 4, Jul. 2011, pp. 513-518. crossref(new window)

I. M. Ross and M. Karpenko, “A Review of Pseudospectral Optimal Control: From theory to flight,” Annual Reviews in Control, Vol. 36, Issue 2, pp. 182-197, December 2012. crossref(new window)

D. Benson, “A Gauss Pseudo-spectral Transcription for Optimal Control,” Ph.D. Thesis, MIT, Department of Aeronautics and Astronautics, Nov. 2004.

G. T. Huntington, “Advancement and Analysis of a Gauss Pseudo-spectral Transcription for Optimal Control Problems,” Ph. D. Thesis, MIT, Jun. 2007.

P. Grandclèment, “Introduction to Spectral Methods,” European Astronomical Society Publications Series, Vol. 21, pp. 153-180, 2006. DOI: eas:2006112.

M. Maleki, I. Hashim, and S. Abbasbandy, “Analysis of IVPs and BVPs on Semi-Infinite Domains via Collocation Methods,” Journal of Applied Mathematics, Vol. 2012, Article ID 696574, 21 pages, 2012. doi:10.1155/2012/696574

P. Williams, “A Gauss-Lobatto Quadrature Method for Solving Optimal Control Problems,” Australian and New Zealand Industrial and Applied Mathematics Journal, Vol. 47, 2005, pp. 101-115.

S. E. El-gendi, “Chebyshev Solution of Differential, Integral and Integro-Differential Equations,” The Computer Journal, Vol. 12, No. 3, pp. 282-287, 1969. doi: 10.1093/comjnl/12.3.282. crossref(new window)

C.-J. Kim, S. K. Sung, S. H. Park, S. N. Jung , and T. S. Park, “Numerical Time Scale Separation for Nonlinear Optimal Control Analyses with Applications to Rotorcrafts,” AIAA Journal of Guidance, Control and Dynamics, Vol. 37, No. 2, March 2014, pp. 658-673. crossref(new window)

Q. Gong, I. M. Ross, and F. Fahroo, “Pseudospectral Optimal Control on Arbitrary Grids,” in Proc. of AAS / AIAA Astrodynamics Specialist Conference, Pittsburgh, PA, August 9-13, 2009.

J. Waldvogel, “Fast Construction of the Fejér and Clenshaw-Curtis Quadrature Rules,” BIT Numerical Mathematics, Vol. 46, Issue 1, pp. 195-202, Mar. 2006. DOI:10.1007/s10543-006-0045-4. crossref(new window)

J. M. Barden, “A Modified Clenshaw-Curtis Quadrature Algorithm,” Worcester Polytechnic Institute, Master Thesis, Department of Science In Applied Mathematics, Apr. 2013.

C. -J. Kim and S. Sung, “Efficient Spline Transcription Techniques for Nonlinear Optimal Control Analyses Using a Pseudospectral Framework,” IEEE Trans. Control Systems Technology, in press, 2015.

S. Pruess, “Properties of Splines in Tension,” Journal of Approximation Theory, Vol. 17, pp. 86-96, 1976. crossref(new window)