JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Optimal Design of Permanent Magnetic Actuator for Permanent Magnet Reduction and Dynamic Characteristic Improvement using Response Surface Methodology
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Optimal Design of Permanent Magnetic Actuator for Permanent Magnet Reduction and Dynamic Characteristic Improvement using Response Surface Methodology
Ahn, Hyun-Mo; Chung, Tae-Kyung; Oh, Yeon-Ho; Song, Ki-Dong; Kim, Young-Il; Kho, Heung-Ryeol; Choi, Myeong-Seob; Hahn, Sung-Chin;
  PDF(new window)
 Abstract
Permanent magnetic actuators (P.M.A.s) are widely used to drive medium-voltage-class vacuum circuit breakers (V.C.B.s). In this paper, a method for design optimization of a P.M.A. for V.C.B.s is discussed. An optimal design process employing the response surface method (R.S.M.) is proposed. In order to calculate electromagnetic and mechanical dynamic characteristics, an initial P.M.A. model is subjected to numerical analysis using finite element analysis (F.E.A.), which is validated by comparing the calculated dynamic characteristics of the initial P.M.A. model with no-load test results. Using tables of mixed orthogonal arrays and the R.S.M., the initial P.M.A. model is optimized to minimize the weight of the permanent magnet (P.M.) and to improve the dynamic characteristics. Finally, the dynamic characteristics of the optimally designed P.M.A. are compared to those of the initially designed P.M.A.
 Keywords
Permanent magnetic actuators;Finite element analysis;Optimization methods;Permanent magnetic machines;Response surface method;
 Language
English
 Cited by
 References
1.
D. D. Shipp, T. J. Dionise, V. Lorch, and B. G. MacFarlane, “Transformer Failure Due to Circuit-Breaker-Induced Switching Transients”, IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 707-718, Mar./Apr., 2011. crossref(new window)

2.
D. D. Shipp, T. J. Dionise, V. Lorch, and W. G. MacFarlane, “Vacuum Circuit Breaker Transients During Switching of an LMF Transformer”, IEEE Trans. Ind. Appl., vol. 48, no. 1, pp. 37-44, Jan./Feb., 2012. crossref(new window)

3.
A. Iturregi, E. Torres, I. Zamora, and O. Abarrategui, "High Voltage Circuit Breaker: SF6 vs. Vacuum", in Proc. the 7nd Int. Conf. Renewable Energies and Power Quality 2009, pp. 1-6.

4.
K. N. Park, J. W. Son, and S. C. Hahn, "Dynamic Characteristic Analysis of Permanent Magnetic Actuators Coupled Electromagnetic-mechanical Finite Element Method", in Proc. 2010 International Conference on Electrical Machines and Systems, pp. 1706-1709.

5.
S.Fang, H.Lin, and S.L. Ho, “Transient Co-Simulation of Low Voltage Circuit Breaker with Permanent Magnet Actuator”, IEEE Trans. Mag., vol. 45, no. 3, pp. 1242-1245, Mar., 2009. crossref(new window)

6.
S. K. Hong, J. S. Ro, and H. K. Jung, “Optimal Design of a Novel Permanent Magnetic Actuator using Evolutionary Strategy Algorithm and Kriging Meta-model”, J Electr. Eng. Technol., vol. 9, no. 2, pp. 471-477, Mar., 2014. crossref(new window)

7.
S. Fang, H. Lin, S. L. Ho, X. Wang, P. Jin, and H. Liu, “Characteristics Analysis and Simulation of Permanent Magnet Actuator with a New Control Method for Air Circuit Breaker”, IEEE Trans. Mag., vol. 45, no. 10, pp. 4566-4569, Oct., 2009. crossref(new window)

8.
J. R. Brauer, Magnetic actuators and sensors, Wiley-Interscience, 2006.

9.
D. K. Hong, B. C. Woo, D. H. Koo, and D. H. Kang, “Optimum Design of Transverse Flux Linear Motor for Weight Reduction and Improvement Thrust Force Using Response Surface Methodology”, IEEE Trans. Mag., vol. 44, no. 11, pp. 4317-4320, Nov., 2008. crossref(new window)

10.
A. Khuri and S. Mukhopadhyay, “Response Surface Methodology: Advanced Review”, WIREs Comp. Stat., vol. 2, no. 2, pp. 128-149, Mar./Apr., 2010. crossref(new window)

11.
D. K. Hong, B. C. Woo, and C. W. Ahn, “Optimum Design for Improvement of PM-type Longitudinal Flux Linear Motor Using the Statistical Methods”, International Journal of Modern Physics B, vol. 24, no. 15n16, pp. 2821-2826, Jun., 2010. crossref(new window)

12.
A. M. Omekanda, “Robust Torque and Torque-perinertia Optimization of a Switched Reluctance Motor using the Taguchi method”, IEEE Trans. Ind. Appl., vol. 42, no.2, pp. 473-478, Mar./Apr., 2006. crossref(new window)

13.
D. K. Hong, B. C. Woo, D. H Koo, and K. C. Lee, “Electromagnet Weight Reduction in a Magnetic Levitation System for Contactless Delivery Applications”, Sensors, vol. 10, no. 7, pp. 6718-6729, Jul., 2010. crossref(new window)

14.
P. G. Slade, The vacuum interrupter - theory, design, and application, CRC Press, 2008.

15.
S.H. Khan, M. Cai, T.V. Grattan, K. Kajan, M. Honeywood, and S. Mills, “Computation of 3-D Magnetic Field Distribution in Long-Lifetime Electromagnetic Actuators”, IEEE Trans. Mag., vol. 43, no. 4, pp. 1161-1164, Apr., 2007. crossref(new window)

16.
J. S. Ro, S. K. Hong, and H. K. Jung, “Characteristic Analysis and Design of a Novel Permanent Magnetic Actuator for a Vacuum Circuit Breaker”, Electric Power Applications, IET, vol. 7, no. 2, pp. 87-96, Feb., 2013. crossref(new window)

17.
G. E. P. Box, J. S. Hunter, and J. S. Hunter, Statistics for Experimenters: Design Innovation, and Discovery, Wiley-Interscience, 2005.

18.
H. M. Hasanien, A. S. Abd-Rabou, and S. M. Sakr, “Design Optimization of Transverse Flux Linear Motor for Weight Reduction and Performance Improvement Using Response Surface Methodology and Genetic Algorithms”, IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 598-605, Sep., 2010. crossref(new window)

19.
J. Xie, D. H. Kang, B. C. Woo, J. Y. Lee, Z. H. Sha, and S. D. Zhao, “Optimum Design of Transverse Flux Machine for High Contribution of Permanent Magnet to Torque Using Response Surface Methodology”, J Electr. Eng. Technol., vol. 7, no. 5, pp. 745-752, Sep., 2012. crossref(new window)